In this paper, we study a class of pseudo-differential operators of SG type in the functional setting of the Gelfand-Shilov spaces $S^{\theta}_{\theta}(R^n), \theta >1$. As an application we prove a result of hypoellipticity in the same classes. In the last of the paper, we define a notion of wave front set for tempered ultradistributions which allows to describe both the local regularity and the behaviour at infinity of the elements of the dual space $(S^{\theta}_{\theta})'(R^n)$.

SG-pseudodifferential operators and Gelfand-Shilov spaces

CAPPIELLO, Marco;RODINO, Luigi Giacomo
2006-01-01

Abstract

In this paper, we study a class of pseudo-differential operators of SG type in the functional setting of the Gelfand-Shilov spaces $S^{\theta}_{\theta}(R^n), \theta >1$. As an application we prove a result of hypoellipticity in the same classes. In the last of the paper, we define a notion of wave front set for tempered ultradistributions which allows to describe both the local regularity and the behaviour at infinity of the elements of the dual space $(S^{\theta}_{\theta})'(R^n)$.
2006
36
1117
1148
M. Cappiello; L. Rodino
File in questo prodotto:
File Dimensione Formato  
articolopubblicato.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 257.41 kB
Formato Adobe PDF
257.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/57135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact