In this paper, we study a class of pseudo-differential operators of SG type in the functional setting of the Gelfand-Shilov spaces $S^{\theta}_{\theta}(R^n), \theta >1$. As an application we prove a result of hypoellipticity in the same classes. In the last of the paper, we define a notion of wave front set for tempered ultradistributions which allows to describe both the local regularity and the behaviour at infinity of the elements of the dual space $(S^{\theta}_{\theta})'(R^n)$.
SG-pseudodifferential operators and Gelfand-Shilov spaces
CAPPIELLO, Marco;RODINO, Luigi Giacomo
2006-01-01
Abstract
In this paper, we study a class of pseudo-differential operators of SG type in the functional setting of the Gelfand-Shilov spaces $S^{\theta}_{\theta}(R^n), \theta >1$. As an application we prove a result of hypoellipticity in the same classes. In the last of the paper, we define a notion of wave front set for tempered ultradistributions which allows to describe both the local regularity and the behaviour at infinity of the elements of the dual space $(S^{\theta}_{\theta})'(R^n)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
257.41 kB
Formato
Adobe PDF
|
257.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.