Heme ligands were introduced in the hydrophobic core of an engineered monomeric ColE1 repressor of primer (rop-S55) in two different layers of the heptad repeat. Mutants rop-L63M/F121H (layer 1) and rop-L56H/L113H (layer 3) were found to bind heme with a K (D) of 1.1 +/- 0.2 and 0.47 +/- 0.07 microM, respectively. The unfolding of heme-bound and heme-free mutants, in the presence of guanidinium hydrochloride, was monitored by both circular dichroism and fluorescence spectroscopy. For the heme-bound rop mutants, the total free energy change was 0.5 kcal/mol higher in the layer 3 mutant compared with that in the layer1 mutant. Heme binding also stabilized these mutants by increasing the [DGobsH2O] by 1.4 and 1.8 kcal/mol in rop-L63M/F121H and rop-L56H/L113H, respectively. The reduction potentials measured by spectroelectrochemical titrations were calculated to be -154 +/- 2 mV for rop-56H/113H and -87.5 +/- 1.2 mV for rop-L63M/F121H. The mutant designed to bind heme in a more buried environment (layer 3) showed tighter heme binding, a higher stability, and a different reduction potential compared with the mutant designed to bind heme in layer 1.

Engineering heme binding sites in monomeric rop

DI NARDO, Giovanna;SADEGHI, JILA;GILARDI, Gianfranco
2009-01-01

Abstract

Heme ligands were introduced in the hydrophobic core of an engineered monomeric ColE1 repressor of primer (rop-S55) in two different layers of the heptad repeat. Mutants rop-L63M/F121H (layer 1) and rop-L56H/L113H (layer 3) were found to bind heme with a K (D) of 1.1 +/- 0.2 and 0.47 +/- 0.07 microM, respectively. The unfolding of heme-bound and heme-free mutants, in the presence of guanidinium hydrochloride, was monitored by both circular dichroism and fluorescence spectroscopy. For the heme-bound rop mutants, the total free energy change was 0.5 kcal/mol higher in the layer 3 mutant compared with that in the layer1 mutant. Heme binding also stabilized these mutants by increasing the [DGobsH2O] by 1.4 and 1.8 kcal/mol in rop-L63M/F121H and rop-L56H/L113H, respectively. The reduction potentials measured by spectroelectrochemical titrations were calculated to be -154 +/- 2 mV for rop-56H/113H and -87.5 +/- 1.2 mV for rop-L63M/F121H. The mutant designed to bind heme in a more buried environment (layer 3) showed tighter heme binding, a higher stability, and a different reduction potential compared with the mutant designed to bind heme in layer 1.
2009
14
497
505
Four-helix bundle; Heme; Rational design; Redox potential; Rop
Di Nardo G.; Di Venere A.; Mei G.; Sadeghi S.J.; Wilson J.R.; Gilardi G.
File in questo prodotto:
File Dimensione Formato  
Rop.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 487.42 kB
Formato Adobe PDF
487.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ROP.pdf

Open Access dal 02/06/2010

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/57811
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact