Long considered merely a trophic and mechanical support to neurons, astrocytes have progressively taken the center stage as their ability to react to acute and chronic neurodegenerative situations became increasingly clear. Reactive astrogliosis starts when trigger molecules produced at the injury site drive astrocytes to leave their quiescent state and become activated. Distinctive morphological and biochemical features characterize this process (cell hypertrophy, upregulation of intermediate filaments, and increased cell proliferation). Moreover, reactive astrocytes migrate towards the injured area to constitute the glial scar, and release factors mediating the tissue inflammatory response and remodeling after lesion. A novel view of astrogliosis derives from the finding that subsets of reactive astrocytes can recapitulate stem cell/progenitor features after damage, fostering the concept of astroglia as a promising target for reparative therapies. But which biochemical/signaling pathways modulate astrogliosis with respect to both the time after injury and the type of damage? Are reactive astrocytes overall beneficial or detrimental for neuroprotection and tissue regeneration? This debate has been animating this research field for several years now, and an integrated view on the results obtained and the possible future perspectives is needed. With this Commentary article we have attempted to answer the above-mentioned questions by reviewing the current knowledge on the molecular mechanisms controlling and sustaining the reaction of astroglia to injury and its stem cell-like properties. Moreover, the cellular/molecular mechanisms supporting the detrimental or beneficial features of astrogliosis have been scrutinized to gain insights on possible pharmacological approaches to enhance astrocyte neuroprotective activities.

Astrocytes in the damaged brain: Molecular andcellular insights into their reactive response and healing potential

BUFFO, Annalisa;ROLANDO, CHIARA;
2010-01-01

Abstract

Long considered merely a trophic and mechanical support to neurons, astrocytes have progressively taken the center stage as their ability to react to acute and chronic neurodegenerative situations became increasingly clear. Reactive astrogliosis starts when trigger molecules produced at the injury site drive astrocytes to leave their quiescent state and become activated. Distinctive morphological and biochemical features characterize this process (cell hypertrophy, upregulation of intermediate filaments, and increased cell proliferation). Moreover, reactive astrocytes migrate towards the injured area to constitute the glial scar, and release factors mediating the tissue inflammatory response and remodeling after lesion. A novel view of astrogliosis derives from the finding that subsets of reactive astrocytes can recapitulate stem cell/progenitor features after damage, fostering the concept of astroglia as a promising target for reparative therapies. But which biochemical/signaling pathways modulate astrogliosis with respect to both the time after injury and the type of damage? Are reactive astrocytes overall beneficial or detrimental for neuroprotection and tissue regeneration? This debate has been animating this research field for several years now, and an integrated view on the results obtained and the possible future perspectives is needed. With this Commentary article we have attempted to answer the above-mentioned questions by reviewing the current knowledge on the molecular mechanisms controlling and sustaining the reaction of astroglia to injury and its stem cell-like properties. Moreover, the cellular/molecular mechanisms supporting the detrimental or beneficial features of astrogliosis have been scrutinized to gain insights on possible pharmacological approaches to enhance astrocyte neuroprotective activities.
2010
79
77
89
http://www.nico.ottolenghi.unito.it/index.php/en/
Extracellular nucleotides; Cytokines; Glial scar; Neural stem cells; Reactive astrogliosis; Brain repair
Buffo A; Rolando C; Ceruti S
File in questo prodotto:
File Dimensione Formato  
Buffo et al., 2010.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 537.1 kB
Formato Adobe PDF
537.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/61064
Citazioni
  • ???jsp.display-item.citation.pmc??? 117
  • Scopus 269
  • ???jsp.display-item.citation.isi??? 246
social impact