We consider in this paper Wigner representations $\Wig_\tau$ depending on a parameter $\tau\in[0,1]$. Integrating these forms with respect to the parameter $\tau$ against a weight function $\Phi$ we obtain a new class of time-frequency representations $\Wig^{\Phi}$ which generalizes the integrated Wigner representation. We give basic properties of $\Wig^{\Phi}$ as subclasses of the general Cohen class.
Weighted Integrals of Wigner Representations
BOGGIATTO, Paolo;DE DONNO, Giuseppe;OLIARO, Alessandro
2010-01-01
Abstract
We consider in this paper Wigner representations $\Wig_\tau$ depending on a parameter $\tau\in[0,1]$. Integrating these forms with respect to the parameter $\tau$ against a weight function $\Phi$ we obtain a new class of time-frequency representations $\Wig^{\Phi}$ which generalizes the integrated Wigner representation. We give basic properties of $\Wig^{\Phi}$ as subclasses of the general Cohen class.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.