We consider in this paper Wigner representations $\Wig_\tau$ depending on a parameter $\tau\in[0,1]$. Integrating these forms with respect to the parameter $\tau$ against a weight function $\Phi$ we obtain a new class of time-frequency representations $\Wig^{\Phi}$ which generalizes the integrated Wigner representation. We give basic properties of $\Wig^{\Phi}$ as subclasses of the general Cohen class.

Weighted Integrals of Wigner Representations

BOGGIATTO, Paolo;DE DONNO, Giuseppe;OLIARO, Alessandro
2010-01-01

Abstract

We consider in this paper Wigner representations $\Wig_\tau$ depending on a parameter $\tau\in[0,1]$. Integrating these forms with respect to the parameter $\tau$ against a weight function $\Phi$ we obtain a new class of time-frequency representations $\Wig^{\Phi}$ which generalizes the integrated Wigner representation. We give basic properties of $\Wig^{\Phi}$ as subclasses of the general Cohen class.
2010
1
4
401
415
http://www.springerlink.com/content/9523571gxg42p644/
Time-Frequency representation; $\tau$-Wigner distribution; Cohen class.
P. Boggiatto; B. K. Cuong; G. De Donno; A. Oliaro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/61977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact