Cellular homeostasis is tightly controlled by the various pathways that regulate cell proliferation and cell death. Breaking this balance is often associated with cancer development. The transforming growth factor-beta (TGF-beta) pathway plays an important role in cellular homeostasis by regulating cell growth inhibition, cellular senescence, differentiation and apoptosis. Deregulated TGF-beta signaling is known to be involved in a variety of human cancers, including those of the colon, pancreas, breast and prostate. While TGF-beta is a potent negative regulator of hematopoiesis, the role of aberrant TGF-beta signaling in leukemogenesis remains largely unknown. Recently, evidence demonstrating deregulated TGF-beta signaling in leukemogenesis, particularly in acute promyelocytic leukemia (APL), has started to emerge. In this review, we summarize the current progress towards the understanding of the molecular mechanisms by which aberrant TGF-beta signaling may participate in leukemogenesis.

Deregulated TGF-beta signaling in leukemogenesis.

PANDOLFI DE RINALDIS, Pier Paolo
2005-01-01

Abstract

Cellular homeostasis is tightly controlled by the various pathways that regulate cell proliferation and cell death. Breaking this balance is often associated with cancer development. The transforming growth factor-beta (TGF-beta) pathway plays an important role in cellular homeostasis by regulating cell growth inhibition, cellular senescence, differentiation and apoptosis. Deregulated TGF-beta signaling is known to be involved in a variety of human cancers, including those of the colon, pancreas, breast and prostate. While TGF-beta is a potent negative regulator of hematopoiesis, the role of aberrant TGF-beta signaling in leukemogenesis remains largely unknown. Recently, evidence demonstrating deregulated TGF-beta signaling in leukemogenesis, particularly in acute promyelocytic leukemia (APL), has started to emerge. In this review, we summarize the current progress towards the understanding of the molecular mechanisms by which aberrant TGF-beta signaling may participate in leukemogenesis.
2005
24
5693
5700
http://dx.doi.org/10.1038/sj.onc.1208923
Endosomes; Hematopoietic Stem Cells; Humans; Leukemia; Promyelocytic; Acute; Membrane Microdomains; Neoplasm Proteins; Nuclear Proteins; Signal Transduction; Transcription Factors; Transforming Growth Factor beta; Tumor Suppressor Proteins
H. Lin;S. Bergmann;P. P. Pandolfi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/63818
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 41
social impact