Mutations leading to aberrant cytoplasmic localization of Nucleophosmin 1 (NPM1) have been recently identified as the most frequent genetic alteration in acute myelogenous leukemia. However, the oncogenic potential of this nucleophosmin mutant (NPMc+) has never been established, which casts doubt on its role in leukemogenesis. By performing classical transformation assays, we find that NPMc+, but not wild-type NPM, cooperates specifically with adenovirus E1A to transform primary mouse embryonic fibroblasts in soft agar. We demonstrate that NPMc+ blocks the p19(Arf) (Arf) induction elicited by E1A. Surprisingly, however, we find that NPMc+ induces cellular senescence and that E1A is able to overcome this response. We propose a model whereby the NPMc+ pro-senescence activity needs to be evaded for oncogenic transformation, even though NPMc+ can concomitantly blunt the Arf/p53 pathway. These findings identify for the first time NPMc+ as an oncogene and shed new unexpected light on its mechanism of action.
The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence
PANDOLFI DE RINALDIS, Pier Paolo
2007-01-01
Abstract
Mutations leading to aberrant cytoplasmic localization of Nucleophosmin 1 (NPM1) have been recently identified as the most frequent genetic alteration in acute myelogenous leukemia. However, the oncogenic potential of this nucleophosmin mutant (NPMc+) has never been established, which casts doubt on its role in leukemogenesis. By performing classical transformation assays, we find that NPMc+, but not wild-type NPM, cooperates specifically with adenovirus E1A to transform primary mouse embryonic fibroblasts in soft agar. We demonstrate that NPMc+ blocks the p19(Arf) (Arf) induction elicited by E1A. Surprisingly, however, we find that NPMc+ induces cellular senescence and that E1A is able to overcome this response. We propose a model whereby the NPMc+ pro-senescence activity needs to be evaded for oncogenic transformation, even though NPMc+ can concomitantly blunt the Arf/p53 pathway. These findings identify for the first time NPMc+ as an oncogene and shed new unexpected light on its mechanism of action.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.