Nitric oxide (NO) is thought to play an important role as a signaling molecule in embryonic and adult cardiomyocytes; however, its involvement in muscarinic signaling is still unclear. The aim of the present work was to analyze the muscarinic modulation of the L-type Ca2+ current (ICa) in early- and late-stage embryonic ventricular cardiomyocytes. Muscarinic stimulation depressed basal ICa by 30.1 ± 3.2% (n=27) in early-stage cardiomyocytes. Pharmacological evidence suggested that the muscarinic modulation was mediated through generation of NO, activation of cGMP-dependent phosphodiesterase (PDE) 2, and ensuing lowering of cyclic AMP/protein kinase A (cAMP/PKA) levels. Conversely, in late-stage cardiomyocytes, muscarinic regulation of ICa occurred in a NO-independent manner via inhibition of prestimulated adenylyl cyclase (AC). To unequivocally prove the involvement of NO and to identify the nitric oxide synthase (NOS) isoform(s), we analyzed muscarinic signaling in embryonic ventricular cardiomyocytes of NOS2 (–/–) and NOS3 (–/–) mice. The early-stage NOS3 (–/–) cardiomyocytes lacked muscarinic modulation, whereas it was preserved in NOS2 (–/–) cells. Moreover, at the late embryonic stage, muscarinic modulation of ICa was intact in both strains. Thus, NO is the key regulator of muscarinic signaling in the early embryonic ventricle, whereas at later stages, signaling occurs through a NO-independent pathway.

Nitric oxide, a key signaling molecule in the murine early embryonic heart

LEVI, Renzo;
2004-01-01

Abstract

Nitric oxide (NO) is thought to play an important role as a signaling molecule in embryonic and adult cardiomyocytes; however, its involvement in muscarinic signaling is still unclear. The aim of the present work was to analyze the muscarinic modulation of the L-type Ca2+ current (ICa) in early- and late-stage embryonic ventricular cardiomyocytes. Muscarinic stimulation depressed basal ICa by 30.1 ± 3.2% (n=27) in early-stage cardiomyocytes. Pharmacological evidence suggested that the muscarinic modulation was mediated through generation of NO, activation of cGMP-dependent phosphodiesterase (PDE) 2, and ensuing lowering of cyclic AMP/protein kinase A (cAMP/PKA) levels. Conversely, in late-stage cardiomyocytes, muscarinic regulation of ICa occurred in a NO-independent manner via inhibition of prestimulated adenylyl cyclase (AC). To unequivocally prove the involvement of NO and to identify the nitric oxide synthase (NOS) isoform(s), we analyzed muscarinic signaling in embryonic ventricular cardiomyocytes of NOS2 (–/–) and NOS3 (–/–) mice. The early-stage NOS3 (–/–) cardiomyocytes lacked muscarinic modulation, whereas it was preserved in NOS2 (–/–) cells. Moreover, at the late embryonic stage, muscarinic modulation of ICa was intact in both strains. Thus, NO is the key regulator of muscarinic signaling in the early embryonic ventricle, whereas at later stages, signaling occurs through a NO-independent pathway.
2004
18
1108
1130
muscarinic signaling; regulation of ICa; embryonic development; ventricular cardiomyocytes
MALAN D; JI G; SCHMIDT A; ADDICKS K; HESCHELER J; R. LEVI; BLOCH W; FLEISCHMANN BK
File in questo prodotto:
File Dimensione Formato  
fj.03-1158fje.full.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/6615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact