One of the exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. It has been validated on real data sets. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. Doing so, we survey our algorithmic breakthrough which has been the core of our contribution to the IST FET cInQ project.

Contribution to gene expression data analysis by means of set pattern mining

PENSA, Ruggero Gaetano;
2006-01-01

Abstract

One of the exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. It has been validated on real data sets. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. Doing so, we survey our algorithmic breakthrough which has been the core of our contribution to the IST FET cInQ project.
2006
Constraint-based mining and Inductive Databases
Springer
3848
328
347
https://link.springer.com/chapter/10.1007/11615576_15
data mining scenario
R. G. Pensa; J. Besson; C. Robardet; J-F. Boulicaut
File in questo prodotto:
File Dimensione Formato  
idb06.pdf

Accesso riservato

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 331.05 kB
Formato Adobe PDF
331.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/67126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact