Epidemiological studies often involve multiple comparisons, and may therefore report many "false positive" statistically significant findings simply because of the large number of statistical tests involved. Traditional methods ofadjustment for multiple comparisons, such as the Bonferroni method, may induce investigators to ignore potentially important findings, because they do not take account of the fact that some variables are of greater a priori interest than others. The Bonferroni method involves "adjustings all of the findings to take account of the number of comparisons involved even though the a priori evidence may be very strong for some exposures, but may be much weaker (or non-existent)for the other exposures being considered. Furthermore, the Bonferroni method only "adjusts" for estimates of statistical signficance (p-values) and does not "adjust" the effect estimates themselves (e.g. odds ratios and 95% CI). Empirical Bayes and semi-Bayes methods can enable the avoidance of numerous false positive associations, and can produce effect estimates that are, on the average, more valid. In this paper, we report on a research in which we applied these methods to a case-control study of occupational risk factors for lung cancer and tested their performance

Semi-Bayes and empirical Bayes adjustment methods for multiple comparisons

CORBIN, MARINE;MAULE, MILENA MARIA;RICHIARDI, Lorenzo;MERLETTI, Franco;
2008-01-01

Abstract

Epidemiological studies often involve multiple comparisons, and may therefore report many "false positive" statistically significant findings simply because of the large number of statistical tests involved. Traditional methods ofadjustment for multiple comparisons, such as the Bonferroni method, may induce investigators to ignore potentially important findings, because they do not take account of the fact that some variables are of greater a priori interest than others. The Bonferroni method involves "adjustings all of the findings to take account of the number of comparisons involved even though the a priori evidence may be very strong for some exposures, but may be much weaker (or non-existent)for the other exposures being considered. Furthermore, the Bonferroni method only "adjusts" for estimates of statistical signficance (p-values) and does not "adjust" the effect estimates themselves (e.g. odds ratios and 95% CI). Empirical Bayes and semi-Bayes methods can enable the avoidance of numerous false positive associations, and can produce effect estimates that are, on the average, more valid. In this paper, we report on a research in which we applied these methods to a case-control study of occupational risk factors for lung cancer and tested their performance
2008
32
108
110
CORBIN M; MAULE M; RICHIARDI L; SIMONATO L; MERLETTI F; PEARCE N
File in questo prodotto:
File Dimensione Formato  
E&P2_108_s&m.pdf

Accesso riservato

Tipo di file: DEROGA (OBBLIGATORIO ALLEGARE FILE CON MOTIVAZIONE)
Dimensione 250.24 kB
Formato Adobe PDF
250.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/68478
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact