It has been shown that insoluble Gd chelates; are suitable MRI contrast agents for conditional activation by intracellular lipases. The DTPA-based, insoluble, inactive contrast agent was internalized into dendritic cells by phagocytosis. Cleavage of long aliphatic side chains by intracellular lipase activity leads to the contrast agents solubility and hereby its activation depending on the enzyme expression. Uptake and activation of the contrast agent was much reduced in Flt3+ CD11b+ progenitor cells. Detectability limits in the T-1-weighted MR images were estimated in phantoms and in vivo in the rat brain. Marginal toxic effects were only observed at very high concentrations of the contrast agent. The chelate can easily be modified to be targeted by enzymes expressed during specific change of cell status like activation or differentiation. Such a system is suitable for functional cellular in vivo MR imaging.

A responsive MRI contrast agent to monitor functional cell status

AIME, Silvio;
2006-01-01

Abstract

It has been shown that insoluble Gd chelates; are suitable MRI contrast agents for conditional activation by intracellular lipases. The DTPA-based, insoluble, inactive contrast agent was internalized into dendritic cells by phagocytosis. Cleavage of long aliphatic side chains by intracellular lipase activity leads to the contrast agents solubility and hereby its activation depending on the enzyme expression. Uptake and activation of the contrast agent was much reduced in Flt3+ CD11b+ progenitor cells. Detectability limits in the T-1-weighted MR images were estimated in phantoms and in vivo in the rat brain. Marginal toxic effects were only observed at very high concentrations of the contrast agent. The chelate can easily be modified to be targeted by enzymes expressed during specific change of cell status like activation or differentiation. Such a system is suitable for functional cellular in vivo MR imaging.
2006
32
1142
1149
stem cells; dendritic cells; molecular imaging; responsive contrast agents; magnetic resonance imaging; conditional activation
HIMMELREICH U; AIME S; HIERONYMUS T; JUSTICIA C; UGGERI F; ZENKE M; HOEHN M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/6877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 55
social impact