In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques. Among them, a leading role has been certainly played by those exploiting synchrotron radiation (SR) sources. In fact synchrotron radiation has distinct advantages as a photon source, notably high brilliance and continuous energy spectrum; by using the latter characteristic atomic selectivity can be obtained and this is of fundamental help to investigate the structural environment of atoms present only in a few angstrom (Angstrom) thick interface layers of heterostructures. The third generation synchrotron radiation sources have allowed to reach the limit of measuring a monolayer of material, corresponding to about 10(14) atoms/cm(2). Since, in the last decade, the use of intentionally strained heterostructures has greatly enhanced the performance of electrical and electro-optical semiconductor, a particular attention will be devoted to intentionally strained superlattices. First the effect of strain on the band lineups alignments in strained heterostructures will be discussed deeply. Then the attention will be focused on to review the most important results obtained by several groups in the characterization of semiconductor heterostructures using the following structural SR techniques: (i) X-ray absorption-based techniques such as EXAFS, polarization-dependent EXAFS, surface EXAFS and NEXAFS (or XANES); (ii) X-ray diffraction-based techniques such as high-resolution XRD, grazing incidence XRD, XRD reciprocal space maps, X-ray standing waves and diffraction anomalous fine structure (DAFS); (iii) photoelectron-based techniques.

The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films

LAMBERTI, Carlo
2004-01-01

Abstract

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques. Among them, a leading role has been certainly played by those exploiting synchrotron radiation (SR) sources. In fact synchrotron radiation has distinct advantages as a photon source, notably high brilliance and continuous energy spectrum; by using the latter characteristic atomic selectivity can be obtained and this is of fundamental help to investigate the structural environment of atoms present only in a few angstrom (Angstrom) thick interface layers of heterostructures. The third generation synchrotron radiation sources have allowed to reach the limit of measuring a monolayer of material, corresponding to about 10(14) atoms/cm(2). Since, in the last decade, the use of intentionally strained heterostructures has greatly enhanced the performance of electrical and electro-optical semiconductor, a particular attention will be devoted to intentionally strained superlattices. First the effect of strain on the band lineups alignments in strained heterostructures will be discussed deeply. Then the attention will be focused on to review the most important results obtained by several groups in the characterization of semiconductor heterostructures using the following structural SR techniques: (i) X-ray absorption-based techniques such as EXAFS, polarization-dependent EXAFS, surface EXAFS and NEXAFS (or XANES); (ii) X-ray diffraction-based techniques such as high-resolution XRD, grazing incidence XRD, XRD reciprocal space maps, X-ray standing waves and diffraction anomalous fine structure (DAFS); (iii) photoelectron-based techniques.
2004
53
1
197
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVY-4C82DG5-1&_user=525216&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000026382&_version=1&_urlVersion=0&_userid=525216&md5=07896608b722b0288fd684b63dab8056
synchrotron radiation; free electron laser; crystal growth; epitaxy; quantum well; superlattices; semiconductor heterostructures; thin films; band offsets; strain; EXAFS; NEXAFS; XRD; DAFS; XRSW; XPS; UPS
C. LAMBERTI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/6890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 87
social impact