Angiogenesis is a dynamic, hypoxia-stimulated and growth factor-dependent process, and is currently referred to as the formation of new vessels from pre-existing blood vessels. Experimental and clinical studies have unequivocally reported that hepatic angiogenesis, irrespective of aetiology, occurs in conditions of chronic liver diseases (CLDs) characterized by perpetuation of cell injury and death, inflammatory response and progressive fibrogenesis. Angiogenesis and related changes in liver vascular architecture, that in turn concur to increase vascular resistance and portal hypertension and to decrease parenchymal perfusion, have been proposed to favour fibrogenic progression of the disease towards the end-point of cirrhosis. Moreover, hepatic angiogenesis has also been proposed to modulate the genesis of portal-systemic shunts and increase splanchnic blood flow, thus potentially affecting complications of cirrhosis. Hepatic angiogenesis is also crucial for the growth and progression of hepatocellular carcinoma. Recent literature has identified a number of cellular and molecular mechanisms governing the cross-talk between angiogenesis and fibrogenesis, with a specific emphasis on the crucial role of hypoxic conditions and hepatic stellate cells, particularly when activated to the myofibroblast-like pro-fibrogenic phenotype. Experimental anti-angiogenic therapy has been proven to be effective in limiting the progression of CLDs in animal models. From a clinical point of view, anti-angiogenic therapy is currently emerging as a new pharmacologic intervention in patients with advanced fibrosis and cirrhosis.

Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases

PATERNOSTRO, CLAUDIA;NOVO, ERICA;PAROLA, Maurizio
2010-01-01

Abstract

Angiogenesis is a dynamic, hypoxia-stimulated and growth factor-dependent process, and is currently referred to as the formation of new vessels from pre-existing blood vessels. Experimental and clinical studies have unequivocally reported that hepatic angiogenesis, irrespective of aetiology, occurs in conditions of chronic liver diseases (CLDs) characterized by perpetuation of cell injury and death, inflammatory response and progressive fibrogenesis. Angiogenesis and related changes in liver vascular architecture, that in turn concur to increase vascular resistance and portal hypertension and to decrease parenchymal perfusion, have been proposed to favour fibrogenic progression of the disease towards the end-point of cirrhosis. Moreover, hepatic angiogenesis has also been proposed to modulate the genesis of portal-systemic shunts and increase splanchnic blood flow, thus potentially affecting complications of cirrhosis. Hepatic angiogenesis is also crucial for the growth and progression of hepatocellular carcinoma. Recent literature has identified a number of cellular and molecular mechanisms governing the cross-talk between angiogenesis and fibrogenesis, with a specific emphasis on the crucial role of hypoxic conditions and hepatic stellate cells, particularly when activated to the myofibroblast-like pro-fibrogenic phenotype. Experimental anti-angiogenic therapy has been proven to be effective in limiting the progression of CLDs in animal models. From a clinical point of view, anti-angiogenic therapy is currently emerging as a new pharmacologic intervention in patients with advanced fibrosis and cirrhosis.
2010
21
281
288
Paternostro C; David E; Novo E; Parola M.
File in questo prodotto:
File Dimensione Formato  
WJG 2010.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/69226
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 85
social impact