A new model to evaluate dependencies in data mining problems is presented and discussed. The well-known concept of the association rule is replaced by the new definition of dependence value, which is a single real number uniquely associated with a given itemset. Knowledge of dependence values is sufficient to describe all the dependencies characterizing a given data mining problem. The dependence value of an itemset is the difference between the occurrence probability of the itemset and a corresponding “maximum independence estimate.” This can be determined as a function of joint probabilities of the subsets of the itemset being considered by maximizing a suitable entropy function. So it is possible to separate in an itemset of cardinaltiy k the dependence inherited from its subsets of cardinality (k − 1) and the specific inherent dependence of that itemset. The absolute value of the difference between the probability p(i) of the event i that indicates the prescence of the itemset {a,b,... } and its maximum independence estimate is constant for any combination of values of Q &angl0; a,b,... &angr0; Q. In1p addition, the Boolean function specifying the combination of values for which the dependence is positive is a parity function. So the determination of such combinations is immediate. The model appears to be simple and powerful.

Theory of Dependence Values

MEO, Rosa
2000-01-01

Abstract

A new model to evaluate dependencies in data mining problems is presented and discussed. The well-known concept of the association rule is replaced by the new definition of dependence value, which is a single real number uniquely associated with a given itemset. Knowledge of dependence values is sufficient to describe all the dependencies characterizing a given data mining problem. The dependence value of an itemset is the difference between the occurrence probability of the itemset and a corresponding “maximum independence estimate.” This can be determined as a function of joint probabilities of the subsets of the itemset being considered by maximizing a suitable entropy function. So it is possible to separate in an itemset of cardinaltiy k the dependence inherited from its subsets of cardinality (k − 1) and the specific inherent dependence of that itemset. The absolute value of the difference between the probability p(i) of the event i that indicates the prescence of the itemset {a,b,... } and its maximum independence estimate is constant for any combination of values of Q &angl0; a,b,... &angr0; Q. In1p addition, the Boolean function specifying the combination of values for which the dependence is positive is a parity function. So the determination of such combinations is immediate. The model appears to be simple and powerful.
2000
25
380
406
http://portal.acm.org/citation.cfm?doid=363951.363956
Association rules; dependence rules; entropy; variables independence
Meo, Rosa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/7022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact