Dopamine receptor agonists are protective in different models of neurodegeneration by both receptor-dependent and -independent mechanisms. We used SH-SY5Y cells, differentiated into neuron-like type, to evaluate if cabergoline, a dopamine D2 receptor agonist endowed with anti-oxidant activity, protects the cells against ischemia (oxygen-glucose deprivation model). Cabergoline protected the cells from ischemia-induced cell death in a concentration-dependent manner (EC(50)=1.2 microM), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and fluorescein diacetate-propidium iodide staining. This effect, observed even when the drug was added after oxygen-glucose deprivation, was not mediated by either dopamine D2 receptor activation or anti-apoptotic Bcl-2 protein over-expression (Western blotting analysis), but was linked to a reduction in cellular free radical loading (2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining) and membrane lipid peroxidation (thiobarbituric acid-reacting test). In conclusion, cabergoline protects in vitro neurons against ischemia-induced cell death, suggesting its possible use in the therapy of other neurodegenerative diseases in addition to Parkinson's disease.
Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia
MIGLIO, Gianluca;
2004-01-01
Abstract
Dopamine receptor agonists are protective in different models of neurodegeneration by both receptor-dependent and -independent mechanisms. We used SH-SY5Y cells, differentiated into neuron-like type, to evaluate if cabergoline, a dopamine D2 receptor agonist endowed with anti-oxidant activity, protects the cells against ischemia (oxygen-glucose deprivation model). Cabergoline protected the cells from ischemia-induced cell death in a concentration-dependent manner (EC(50)=1.2 microM), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and fluorescein diacetate-propidium iodide staining. This effect, observed even when the drug was added after oxygen-glucose deprivation, was not mediated by either dopamine D2 receptor activation or anti-apoptotic Bcl-2 protein over-expression (Western blotting analysis), but was linked to a reduction in cellular free radical loading (2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining) and membrane lipid peroxidation (thiobarbituric acid-reacting test). In conclusion, cabergoline protects in vitro neurons against ischemia-induced cell death, suggesting its possible use in the therapy of other neurodegenerative diseases in addition to Parkinson's disease.| File | Dimensione | Formato | |
|---|---|---|---|
|
2004_Miglio_EuJPharmacol.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
328.72 kB
Formato
Adobe PDF
|
328.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



