We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.
PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials
TATEO, Roberto
2009-01-01
Abstract
We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.