The expected rate for Multiple Parton Interactions (MPI) at the LHC is large. This requires an estimate of their impact on all measurement foreseen at the LHC while opening unprecendented opportunities for a detailed study of these phenomena. In this paper we examine the MPI background to top-antitop production, in the semileptonic channel, in the early phase of data taking when the full power of $b$--tagging will not be available. The MPI background turns out to be small but non negligible, of the order of 20% of the background provided by W+4j production through a Single Parton Interaction. We then analyze the possibility of studying Multiple Parton Interactions in the W+4j channel, a far more complicated setting than the reactions examined at lower energies. The MPI contribution turns out to be dominated by final states with two energetic jets which balance in transverse momentum, and it appears possible, thanks to the good angular resolution of ATLAS and CMS, to separate the Multiple Parton Interactions contribution from Single Parton Interaction processes. The large cross section for two jet production suggests that also Triple Parton Interactions (TPI) could provide a non negligible contribution. Our preliminary analysis suggests that it might be indeed possible to investigate TPI at the LHC.
Multiple Parton Interactions, top-antitop and W + 4j production at the LHC
MAINA, Ezio
2009-01-01
Abstract
The expected rate for Multiple Parton Interactions (MPI) at the LHC is large. This requires an estimate of their impact on all measurement foreseen at the LHC while opening unprecendented opportunities for a detailed study of these phenomena. In this paper we examine the MPI background to top-antitop production, in the semileptonic channel, in the early phase of data taking when the full power of $b$--tagging will not be available. The MPI background turns out to be small but non negligible, of the order of 20% of the background provided by W+4j production through a Single Parton Interaction. We then analyze the possibility of studying Multiple Parton Interactions in the W+4j channel, a far more complicated setting than the reactions examined at lower energies. The MPI contribution turns out to be dominated by final states with two energetic jets which balance in transverse momentum, and it appears possible, thanks to the good angular resolution of ATLAS and CMS, to separate the Multiple Parton Interactions contribution from Single Parton Interaction processes. The large cross section for two jet production suggests that also Triple Parton Interactions (TPI) could provide a non negligible contribution. Our preliminary analysis suggests that it might be indeed possible to investigate TPI at the LHC.File | Dimensione | Formato | |
---|---|---|---|
050_MPItt_JHEP04(2009)098.pdf
Accesso aperto
Descrizione: Articolo full-text
Tipo di file:
PDF EDITORIALE
Dimensione
248.31 kB
Formato
Adobe PDF
|
248.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.