Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment. In control CHO-K1 cells stably co-transfected with hD2R and hSSTR2, relatively low FRET efficiency and weak expression in co-immunoprecipitate from HEK-293 cells suggest the absence of preformed heterooligomers. However, upon treatment with selective ligands, hD2R and hSSTR2 exhibit heterodimerization. Agonist-induced heterodimerization was accompanied by increased affinity for dopamine and augmented hD2R signalling as well as prolonged hSSTR2 internalization. In contrast, cultured striatal neurons display constitutive heterodimerization between D2R and SSTR2, which were agonist-independent. However, heterodimerization in neurons was completely abolished in the presence of the D2R antagonist eticlopride. These findings suggest that hD2R and hSSTR2 operate as functional heterodimers modulated by ligands in situ, which may prove to be a useful model in designing new therapeutic drugs

Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2. Co-immunoprecipitation and fluorescence resonance energy transfer analysis.

BARAGLI, ALESSANDRA;
2007-01-01

Abstract

Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment. In control CHO-K1 cells stably co-transfected with hD2R and hSSTR2, relatively low FRET efficiency and weak expression in co-immunoprecipitate from HEK-293 cells suggest the absence of preformed heterooligomers. However, upon treatment with selective ligands, hD2R and hSSTR2 exhibit heterodimerization. Agonist-induced heterodimerization was accompanied by increased affinity for dopamine and augmented hD2R signalling as well as prolonged hSSTR2 internalization. In contrast, cultured striatal neurons display constitutive heterodimerization between D2R and SSTR2, which were agonist-independent. However, heterodimerization in neurons was completely abolished in the presence of the D2R antagonist eticlopride. These findings suggest that hD2R and hSSTR2 operate as functional heterodimers modulated by ligands in situ, which may prove to be a useful model in designing new therapeutic drugs
2007
19
2304
2316
Baragli A; Alturaihi H; Watt HL; Abdallah A; Kumar U.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/73536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 111
  • ???jsp.display-item.citation.isi??? 101
social impact