We introduce the concept of partial event as a pair of disjoint sets, respectively the favorable and the unfavorable cases. Partial events can be seen as a De Morgan algebra with a single fixed point for the complement. We introduce the concept of a measure of partial probability, based on a set of axioms resembling Kolmogoroff’s. Finally we define a concept of conditional probability for partial events and apply this concept to the analysis of the two-slit experiment in quantum mechanics.
A probability measure for partial events
NEGRI, Maurizio
2010-01-01
Abstract
We introduce the concept of partial event as a pair of disjoint sets, respectively the favorable and the unfavorable cases. Partial events can be seen as a De Morgan algebra with a single fixed point for the complement. We introduce the concept of a measure of partial probability, based on a set of axioms resembling Kolmogoroff’s. Finally we define a concept of conditional probability for partial events and apply this concept to the analysis of the two-slit experiment in quantum mechanics.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
459893 probability measure_negri.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
248.53 kB
Formato
Adobe PDF
|
248.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.