Morphological, textural, and surface properties of a NSR (NOx storage reduction) Pt-K/Al2O3 model catalyst (Pt 1 wt %; K 5.4 wt %) were characterized by means of XRD, HRTEM, and FT-IR spectroscopy. Thin crystalline K-containing layers, in the form of cubic K2O and monoclinic K2CO3 and very small roundish Pt particles with a mean diameter of 1.5 nm, have been observed. Monoclinic K2CO3 disappears, and a certain degree of Pt sintering occurs (dPt ≈ 3.4 nm) after use. However, the presence of potassium limits the Pt sintering which occurs on the Pt/Al2O3 reference sample (Pt 1 wt %). FT-IR spectra of CO adsorbed at RT, compared with those recorded for Pt/Al2O3, revealed a marked interaction between the Pt and K phases that is much higher than the interaction between the Pt and Ba phases observed for the classic Pt-Ba/Al2O3 catalyst. CO2 adsorption at RT indicated a high heterogeneity of the K phase, evidenced by the formation of a variety of surface-carbonate-like species (mainly bridging carbonates on K sites). Minor amounts of nitrites and nitrates were formed at RT under NO admission, while the uptake was sensibly higher under NO/O2 or NO2 admission; nitrites (mono- and bidentate) and nitrates (ionic and bidentates) were formed in different amounts, both relative and absolute, and the nitrate to nitrite ratio increased in parallel with the NO/O2 ratio. Also, at each contact time, the amount of the stored NOx species increased upon increasing the NO/O2 ratio.

Pt-K/Al2O3 NSR catalysts: characterization of morphological, structural and surface properties

MANZOLI, Maela;MORANDI, Sara;FROLA, Francesca;GHIOTTI, Giovanna;
2010-01-01

Abstract

Morphological, textural, and surface properties of a NSR (NOx storage reduction) Pt-K/Al2O3 model catalyst (Pt 1 wt %; K 5.4 wt %) were characterized by means of XRD, HRTEM, and FT-IR spectroscopy. Thin crystalline K-containing layers, in the form of cubic K2O and monoclinic K2CO3 and very small roundish Pt particles with a mean diameter of 1.5 nm, have been observed. Monoclinic K2CO3 disappears, and a certain degree of Pt sintering occurs (dPt ≈ 3.4 nm) after use. However, the presence of potassium limits the Pt sintering which occurs on the Pt/Al2O3 reference sample (Pt 1 wt %). FT-IR spectra of CO adsorbed at RT, compared with those recorded for Pt/Al2O3, revealed a marked interaction between the Pt and K phases that is much higher than the interaction between the Pt and Ba phases observed for the classic Pt-Ba/Al2O3 catalyst. CO2 adsorption at RT indicated a high heterogeneity of the K phase, evidenced by the formation of a variety of surface-carbonate-like species (mainly bridging carbonates on K sites). Minor amounts of nitrites and nitrates were formed at RT under NO admission, while the uptake was sensibly higher under NO/O2 or NO2 admission; nitrites (mono- and bidentate) and nitrates (ionic and bidentates) were formed in different amounts, both relative and absolute, and the nitrate to nitrite ratio increased in parallel with the NO/O2 ratio. Also, at each contact time, the amount of the stored NOx species increased upon increasing the NO/O2 ratio.
2010
114
1127
1138
Lean NOx Trap; Pt-K/Al2O3; FT-IR
F. Prinetto; M. Manzoli; S. Morandi; F. Frola; G. Ghiotti; L. Castoldi; L. Lietti; P. Forzatti
File in questo prodotto:
File Dimensione Formato  
PtKAlJPhysChemC2010.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/76308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 43
social impact