Both long-term and short-term sensitization of the gill and siphon withdrawal reflex in Aplysia involve facilitation of the monosynaptic connections between the sensory and motor neurons. To analyze the relationship between these two forms of synaptic facilitation at the cellular and molecular level, this monosynaptic sensorimotor component of the gill-withdrawal reflex of Aplysia can be reconstituted in dissociated cell culture. Whereas one brief application of 1 microM serotonin produced short-term facilitation in the sensorimotor connection that lasted minutes, five applications over 1.5 hours resulted in long-term facilitation that lasted more than 24 hours. Inhibitors of protein synthesis or RNA synthesis selectively blocked long-term facilitation, but not short-term facilitation, indicating that long-term facilitation requires the expression of gene products not essential for short-term facilitation. Moreover, the inhibitors only blocked long-term facilitation when given during the serotonin applications; the inhibitors did not block the facilitation when given either before or after serotonin application. These results parallel those for behavioral performance in vertebrates and indicate that the critical time window characteristic of the requirement for macromolecular synthesis in long-term heterosynaptic facilitation is not a property of complex circuitry, but an intrinsic characteristic of specific nerve cells and synaptic connections involved in the long-term storage of information.

A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia

MONTAROLO, Pier Giorgio;
1986-01-01

Abstract

Both long-term and short-term sensitization of the gill and siphon withdrawal reflex in Aplysia involve facilitation of the monosynaptic connections between the sensory and motor neurons. To analyze the relationship between these two forms of synaptic facilitation at the cellular and molecular level, this monosynaptic sensorimotor component of the gill-withdrawal reflex of Aplysia can be reconstituted in dissociated cell culture. Whereas one brief application of 1 microM serotonin produced short-term facilitation in the sensorimotor connection that lasted minutes, five applications over 1.5 hours resulted in long-term facilitation that lasted more than 24 hours. Inhibitors of protein synthesis or RNA synthesis selectively blocked long-term facilitation, but not short-term facilitation, indicating that long-term facilitation requires the expression of gene products not essential for short-term facilitation. Moreover, the inhibitors only blocked long-term facilitation when given during the serotonin applications; the inhibitors did not block the facilitation when given either before or after serotonin application. These results parallel those for behavioral performance in vertebrates and indicate that the critical time window characteristic of the requirement for macromolecular synthesis in long-term heterosynaptic facilitation is not a property of complex circuitry, but an intrinsic characteristic of specific nerve cells and synaptic connections involved in the long-term storage of information.
1986
234
1259
1254
Montarolo PG; Goelet P; Castellucci VF; Morgan J; Kandel ER; Schacher S
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/76818
Citazioni
  • ???jsp.display-item.citation.pmc??? 206
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact