The relative contribution of stomatal and cuticular conductance to transpiration from whole tissue-cultured apple shoots of Malus pumila Mill. M.26 was determined with a modified steady state porometer. When shoots were exposed to 90% RH and high boundary layer conductance, large (73%) and, in some cases, rapid (2 to 3 hours) reductions in leaf conductance occurred, indicating functional stomata. Stomatal closure was also observed microscopically. A maximum estimate for the cuticular conductance of these apple leaves was 18 to 40 mmol m-2-s-1, which is lower than previous estimates and close to the upper limit of naturally occurring leaf cuticular conductances. Hence, both stomatal and cuticular restrictions of water loss appear to be of importance in determining the water balance of tissue-cultured apple shoots. The pathway of water transport in relation to water stress of tissue-cultured shoots is also discussed.

Stomatal function and cuticular conductance in intact tissue cultured apple shoot.

NOVELLO, Vittorino;
1990-01-01

Abstract

The relative contribution of stomatal and cuticular conductance to transpiration from whole tissue-cultured apple shoots of Malus pumila Mill. M.26 was determined with a modified steady state porometer. When shoots were exposed to 90% RH and high boundary layer conductance, large (73%) and, in some cases, rapid (2 to 3 hours) reductions in leaf conductance occurred, indicating functional stomata. Stomatal closure was also observed microscopically. A maximum estimate for the cuticular conductance of these apple leaves was 18 to 40 mmol m-2-s-1, which is lower than previous estimates and close to the upper limit of naturally occurring leaf cuticular conductances. Hence, both stomatal and cuticular restrictions of water loss appear to be of importance in determining the water balance of tissue-cultured apple shoots. The pathway of water transport in relation to water stress of tissue-cultured shoots is also discussed.
1990
115
468
472
water transport; water stress; gas exchange; Malus pumila; rootstock M.26
SHACKEL K.A.; V. NOVELLO; SUTTER E.G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/7895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact