MOTIVATION: The identification of genes involved in specific phenotypes, such as human hereditary diseases, often requires the time-consuming and expensive examination of a large number of positional candidates selected by genome-wide techniques such as linkage analysis and association studies. Even considering the positive impact of next-generation sequencing technologies, the prioritization of these positional candidates may be an important step for disease-gene identification. RESULTS: Here, we report a large-scale analysis of spatial, i.e. 3D, gene-expression data from an entire organ (the mouse brain) for the purpose of evaluating and ranking positional candidate genes, showing that the spatial gene-expression patterns can be successfully exploited for the prediction of gene-phenotype associations not only for mouse phenotypes, but also for human central nervous system-related Mendelian disorders. We apply our method to the case of X-linked mental retardation, compare the predictions to the results obtained from a previous large-scale resequencing study of chromosome X and discuss some promising novel candidates

Candidate gene prioritization based on spatially mapped gene expression: an application to XLMR

PIRO, Rosario Michael;MOLINERIS, Ivan;ALA, UGO;PROVERO, Paolo;DI CUNTO, Ferdinando
2010-01-01

Abstract

MOTIVATION: The identification of genes involved in specific phenotypes, such as human hereditary diseases, often requires the time-consuming and expensive examination of a large number of positional candidates selected by genome-wide techniques such as linkage analysis and association studies. Even considering the positive impact of next-generation sequencing technologies, the prioritization of these positional candidates may be an important step for disease-gene identification. RESULTS: Here, we report a large-scale analysis of spatial, i.e. 3D, gene-expression data from an entire organ (the mouse brain) for the purpose of evaluating and ranking positional candidate genes, showing that the spatial gene-expression patterns can be successfully exploited for the prediction of gene-phenotype associations not only for mouse phenotypes, but also for human central nervous system-related Mendelian disorders. We apply our method to the case of X-linked mental retardation, compare the predictions to the results obtained from a previous large-scale resequencing study of chromosome X and discuss some promising novel candidates
2010
26
18
i618
i624
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935433/
Piro RM; Molineris I; Ala U; Provero P; Di Cunto F
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/80390
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact