The preparation of polymer nanoparticles loaded with an active principle, commonly used in cancer treatment, is investigated here from the experimental point of view. The main novelty of this work stands in the use of continuous confined impinging jets mixers in combination with realistic materials, notably the biodegradable and biocompatible copolymer poly(methoxypolyethyleneglycolcyanoacrylate-co-hexadecylcyanoacrylate) together with two forms of the drug doxorubicin. To our knowledge this is the first attempt to use for such a system a device that can be operated continuously and can be easily scaled up. Nanoparticles are produced via solvent-displacement experimenting different solvents; the effect of the other operating parameters is also investigated. Nanoparticles are characterized in terms of their size distribution and surface properties; for a limited number of samples prepared with the optimized preparation protocol further characterization (in terms of drug loading, incorporation and release profiles) is also carried out. Collected results show that the overall approach is capable of producing nanoparticles with controlled particle size distribution, drug loading and good reproducibility and that on the contrary of what reported in the literature the presence of the active principle does play an important role.

Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery

STELLA, Barbara;DOSIO, Franco
2011-01-01

Abstract

The preparation of polymer nanoparticles loaded with an active principle, commonly used in cancer treatment, is investigated here from the experimental point of view. The main novelty of this work stands in the use of continuous confined impinging jets mixers in combination with realistic materials, notably the biodegradable and biocompatible copolymer poly(methoxypolyethyleneglycolcyanoacrylate-co-hexadecylcyanoacrylate) together with two forms of the drug doxorubicin. To our knowledge this is the first attempt to use for such a system a device that can be operated continuously and can be easily scaled up. Nanoparticles are produced via solvent-displacement experimenting different solvents; the effect of the other operating parameters is also investigated. Nanoparticles are characterized in terms of their size distribution and surface properties; for a limited number of samples prepared with the optimized preparation protocol further characterization (in terms of drug loading, incorporation and release profiles) is also carried out. Collected results show that the overall approach is capable of producing nanoparticles with controlled particle size distribution, drug loading and good reproducibility and that on the contrary of what reported in the literature the presence of the active principle does play an important role.
2011
89
2410
2419
Federica Lince; Sara Bolognesi; Barbara Stella; Daniele L. Marchisio; Franco Dosio
File in questo prodotto:
File Dimensione Formato  
CHERD751.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 825.82 kB
Formato Adobe PDF
825.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/83435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact