Recently we reported that Dictyostelium cells ingest Legionella pneumophila by macropinocytosis, whereas other bacteria, such as Escherichia coli, Mycobacterium avium, Neisseria meningitidis or Salmonella typhimurium, are taken up by phagocytosis.1 In contrast to phagocytosis, macropinocytosis is partially inhibited by PI3K or PTEN inactivation, whereas both processes are sensitive to PLC inhibition. Independently from reduced uptake, L. pneumophila proliferates more efficiently in PI3K-null than in wild type cells. PI3K inactivation also neutralizes resistance to infection conferred by constitutively expressing the endo-lysosomal iron transporter Nramp1. We have shown this to be due to altered recruitment of the V-H+ ATPase, but not Nramp1, in the Legionella-containing vacuole (LCV) early during infection.1 As further evidence for impaired LCV acidification we examine here the effects of disrupting the small G protein RacH on Legionella infection.

Legionella pneumophila infection is enhanced in a RacH-null mutant of Dictyostelium

PERACINO, Barbara;BOZZARO, Salvatore
2011

Abstract

Recently we reported that Dictyostelium cells ingest Legionella pneumophila by macropinocytosis, whereas other bacteria, such as Escherichia coli, Mycobacterium avium, Neisseria meningitidis or Salmonella typhimurium, are taken up by phagocytosis.1 In contrast to phagocytosis, macropinocytosis is partially inhibited by PI3K or PTEN inactivation, whereas both processes are sensitive to PLC inhibition. Independently from reduced uptake, L. pneumophila proliferates more efficiently in PI3K-null than in wild type cells. PI3K inactivation also neutralizes resistance to infection conferred by constitutively expressing the endo-lysosomal iron transporter Nramp1. We have shown this to be due to altered recruitment of the V-H+ ATPase, but not Nramp1, in the Legionella-containing vacuole (LCV) early during infection.1 As further evidence for impaired LCV acidification we examine here the effects of disrupting the small G protein RacH on Legionella infection.
COMMUNICATIVE & INTEGRATIVE BIOLOGY
4
1
4
Balest A; Peracino B; Bozzaro S
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/85658
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact