PEGylation is one of the most successful strategies to improve the delivery of therapeutic molecules such as proteins, macromolecular carriers, small drugs, oligonucleotides, and other biomolecules. PEGylation increase the size and molecular weight of conjugated biomolecules and improves their pharmacokinetics and pharmacodinamics by increasing water solubility, protecting from enzymatic degradation, reducing renal clearance and limiting immunogenic and antigenic reactions. PEGylated molecules show increased half-life, decreased plasma clearance, and different biodistribution, in comparison with non-PEGylated counterparts. These features appear to be very useful for therapeutic proteins, since the high stability and very low immunogenicity of PEGylated proteins result in sustained clinical response with minimal dose and less frequent administration. PEGylation of liposomes improves not only the stability and circulation time, but also the 'passive' targeting ability on tumoral tissues, through a process known as the enhanced permeation retention effect, able to improve the therapeutic effects and reduce the toxicity of encapsulated drug. The molecular weight, shape, reactivity, specificity, and type of bond of PEG moiety are crucial in determining the effect on PEGylated molecules and, at present, researchers have the chance to select among tens of PEG derivatives and PEG conjugation technologies, in order to design the best PEGylation strategy for each particular application. The aim of the present review will be to elucidate the principles of PEGylation chemistry and to describe the already marketed PEGylated proteins and liposomes by focusing our attention to some enlightening examples of how this technology could dramatically influence the clinical application of therapeutic biomolecules.

PEGylation of proteins and liposomes, a powerful and flexible strategy to improve the drug delivery

MILLA, Paola;DOSIO, Franco;CATTEL, Luigi
2012-01-01

Abstract

PEGylation is one of the most successful strategies to improve the delivery of therapeutic molecules such as proteins, macromolecular carriers, small drugs, oligonucleotides, and other biomolecules. PEGylation increase the size and molecular weight of conjugated biomolecules and improves their pharmacokinetics and pharmacodinamics by increasing water solubility, protecting from enzymatic degradation, reducing renal clearance and limiting immunogenic and antigenic reactions. PEGylated molecules show increased half-life, decreased plasma clearance, and different biodistribution, in comparison with non-PEGylated counterparts. These features appear to be very useful for therapeutic proteins, since the high stability and very low immunogenicity of PEGylated proteins result in sustained clinical response with minimal dose and less frequent administration. PEGylation of liposomes improves not only the stability and circulation time, but also the 'passive' targeting ability on tumoral tissues, through a process known as the enhanced permeation retention effect, able to improve the therapeutic effects and reduce the toxicity of encapsulated drug. The molecular weight, shape, reactivity, specificity, and type of bond of PEG moiety are crucial in determining the effect on PEGylated molecules and, at present, researchers have the chance to select among tens of PEG derivatives and PEG conjugation technologies, in order to design the best PEGylation strategy for each particular application. The aim of the present review will be to elucidate the principles of PEGylation chemistry and to describe the already marketed PEGylated proteins and liposomes by focusing our attention to some enlightening examples of how this technology could dramatically influence the clinical application of therapeutic biomolecules.
2012
13
105
119
Drug delivery; EPR effect; Interferons; PEGylated liposomes; PEGylated proteins; PEGylation; Poly-(ethylene glycol)
P. Milla; F. Dosio; L. Cattel
File in questo prodotto:
File Dimensione Formato  
post-print_4aperto.pdf

Open Access dal 15/07/2013

Descrizione: versione post-print
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 644.11 kB
Formato Adobe PDF
644.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/86788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 353
  • ???jsp.display-item.citation.isi??? 315
social impact