The particular combination of polydeoxyribonucleotides, l-carnitine, calcium ions, proteolytic enzyme and other ingredients acts in a synergetic way in the regeneration of skin and connective tissues. This new formulation of active principles was tested in vitro as a cell and tissue culture medium and in vivo for various preparations in support of tissue regeneration. In vitro, the new blend allowed the maintenance of skin biopsies for more than 1 year in eutrophic conditions. Immunocytochemical analyses of fibroblasts isolated from these biopsies confirmed a significant increase of the epidermal and connective wound-healing markers such as collagen type I, collagen type IV, cytokeratin 1 (CK1), CK5, CK10 and CK14 versus controls. To examine the effects of the new compound in vivo, we studied impaired wound healing in genetically diabetic db/db mice. At day 18, diabetic mice treated with the new composition showed 100\% closure of wounds and faster healing than mice treated with the other solutions. This complex of vital continuity factors or life-keeping factors could be used as a tissue-preserving solution or a cosmetic/drug/medical device to accelerate wound healing in the treatment of patients with deficient wound repair to promote the regeneration of cutaneous and connective tissues (injuries-wound, dermatitis) and prevent the recurrent relapses.
A novel composition for in vitro and in vivo regeneration of skin and connective tissues.
DENYSENKO, Tetyana;ROOS, Maria Augusta;CAVALLO, Giovanni;PESCARMONA, Gianpiero
2011-01-01
Abstract
The particular combination of polydeoxyribonucleotides, l-carnitine, calcium ions, proteolytic enzyme and other ingredients acts in a synergetic way in the regeneration of skin and connective tissues. This new formulation of active principles was tested in vitro as a cell and tissue culture medium and in vivo for various preparations in support of tissue regeneration. In vitro, the new blend allowed the maintenance of skin biopsies for more than 1 year in eutrophic conditions. Immunocytochemical analyses of fibroblasts isolated from these biopsies confirmed a significant increase of the epidermal and connective wound-healing markers such as collagen type I, collagen type IV, cytokeratin 1 (CK1), CK5, CK10 and CK14 versus controls. To examine the effects of the new compound in vivo, we studied impaired wound healing in genetically diabetic db/db mice. At day 18, diabetic mice treated with the new composition showed 100\% closure of wounds and faster healing than mice treated with the other solutions. This complex of vital continuity factors or life-keeping factors could be used as a tissue-preserving solution or a cosmetic/drug/medical device to accelerate wound healing in the treatment of patients with deficient wound repair to promote the regeneration of cutaneous and connective tissues (injuries-wound, dermatitis) and prevent the recurrent relapses.File | Dimensione | Formato | |
---|---|---|---|
572569.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
911.95 kB
Formato
Adobe PDF
|
911.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.