This is the first report of the direct electrochemistry of the reductase (PHR) and oxygenase (PHO) components of phenol hydroxylase from Acinetobacter radioresistens S13 studied by cyclic and differential pulse voltammetry. The PHR contains one 2Fe2S cluster and one FAD that mediate the transfer of electrons from NAD(P)H to the non-heme diiron cluster of PHO. Cyclic and differential pulse voltammetry (CV and DPV) on glassy carbon showed two redox pairs with midpoint potentials at +131.5±13 mV and -234±3 mV versus normal hydrogen electrode (NHE). The first redox couple is attributed to the FeS centre, while the second one corresponds to free FAD released by the protein. DPV scans on native and guanidinium chloride treated PHR highlighted the presence of a split signal (E~100 mV) attributed to heterogeneous properties of the 2Fe2S cluster interacting with the electrode, possibly due to the presence of two protein conformers and consistently with the large peak-to-peak separation and the peak broadening observed in CV. DPV experiments on gold electrodes performed on PHO, confirm a consistently higher reduction potential at +396 mV vs NHE. The positive redox potentials measured by direct electrochemistry for the FeS cluster in PHR and for the non-heme diiron cluster of PHO show that the entire phenol hydroxylase system works at higher potentials than those reported for structurally similar enzymes, for example methane monooxygenases.

Iron-based redox centres of reductase and oxygenase components of phenol hydroxylase from A. radioresistens: A redox chain working at highly positive redox potentials

VALETTI, Francesca;SADEGHI, JILA;GILARDI, Gianfranco
2012-01-01

Abstract

This is the first report of the direct electrochemistry of the reductase (PHR) and oxygenase (PHO) components of phenol hydroxylase from Acinetobacter radioresistens S13 studied by cyclic and differential pulse voltammetry. The PHR contains one 2Fe2S cluster and one FAD that mediate the transfer of electrons from NAD(P)H to the non-heme diiron cluster of PHO. Cyclic and differential pulse voltammetry (CV and DPV) on glassy carbon showed two redox pairs with midpoint potentials at +131.5±13 mV and -234±3 mV versus normal hydrogen electrode (NHE). The first redox couple is attributed to the FeS centre, while the second one corresponds to free FAD released by the protein. DPV scans on native and guanidinium chloride treated PHR highlighted the presence of a split signal (E~100 mV) attributed to heterogeneous properties of the 2Fe2S cluster interacting with the electrode, possibly due to the presence of two protein conformers and consistently with the large peak-to-peak separation and the peak broadening observed in CV. DPV experiments on gold electrodes performed on PHO, confirm a consistently higher reduction potential at +396 mV vs NHE. The positive redox potentials measured by direct electrochemistry for the FeS cluster in PHR and for the non-heme diiron cluster of PHO show that the entire phenol hydroxylase system works at higher potentials than those reported for structurally similar enzymes, for example methane monooxygenases.
2012
4
1
72
77
Phenol Hydroxylase; Methane Monooxygenase; cyclic voltammetry; iron-sulfur clusters
Francesca Valetti; Andrea Fantuzzi; Sheila J. Sadeghi; Gianfranco Gilardi
File in questo prodotto:
File Dimensione Formato  
Valetti et al 2012-1.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/89473
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact