A model for conductance in n-type non-degenerate semiconductors is proposed and applied to polycrystalline SnO2 used as a gas sensor. Particular attention is devoted to the fundamental mechanism of Schottky barrier formation due to surface states in nanostructured grains. Electrical and absorption infra-red spectroscopic analysis constitutes strong evidence for oxygen diffusion into the tin oxide grains. The model is then extended to include oxygen in- and out-diffusion. Thus, it is possible to explain the “long-term” resistance drift in oxygen for fully depleted grained samples in terms of tunneling through the double barrier.

Electrical and spectroscopic analysis in nanostructured SnO2: “Long-term” resistance drift is due to in-diffusion

MORANDI, Sara;
2011-01-01

Abstract

A model for conductance in n-type non-degenerate semiconductors is proposed and applied to polycrystalline SnO2 used as a gas sensor. Particular attention is devoted to the fundamental mechanism of Schottky barrier formation due to surface states in nanostructured grains. Electrical and absorption infra-red spectroscopic analysis constitutes strong evidence for oxygen diffusion into the tin oxide grains. The model is then extended to include oxygen in- and out-diffusion. Thus, it is possible to explain the “long-term” resistance drift in oxygen for fully depleted grained samples in terms of tunneling through the double barrier.
2011
110
093711-1
093711-5
C. Malagu`; A. Giberti; S. Morandi; C. M. Aldao
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/90656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact