Objective: To investigate the effect of malarial pigment (hemozoin, HZ) on expression of heat shock proteins (HSPs) and cell viability in human monocytes by using a stable cell line (THP-1 cells). Methods: THP-1 cells were fed with native HZ or treated with pro-apoptotic molecule gliotoxin for 9 h. Thereafter, the protein expression of HSP-27 and HSP-70 was evaluated by western blotting. Alternatively, HZ-fed cells were cultured up to 72 h and cell viability parameters (survival, apoptosis and necrosis rates) were measured by flow cytometric analysis. Results: HZ increased basal protein levels of HSP-27 without altering those of HSP-70 in THP-1 cells, and promoted long-term cell survival without inducing apoptosis. As expected, gliotoxin inhibited HSP-27 protein expression and promoted long-term cell apoptosis. Conclusions: Present data show that HZ prevents cell apoptosis and enhances the expression of anti-apoptotic HSP-27 in THP-1 cells, confirming the previous evidences obtained from HZ-fed immunopurified monocytes. Since the use of a stable cell line is pivotal to perform HSP-27 silencing experiments, monocytic THP-1 cells could be a good candidate line for such an approach, which is heavily required to clarify the role of HSP-27 in survival of impaired HZ-fed monocytes during falciparum malaria.

Malarial pigment enhances heat shock protein-27 in THP-1 cells: New perspectives for in vitro studies on monocyte apoptosis prevention

PRATO, Mauro;GALLO, Valentina;VALENTE, Elena;KHADJAVI, AMINA;MANDILI, GIORGIA;GIRIBALDI, Giuliana
2010-01-01

Abstract

Objective: To investigate the effect of malarial pigment (hemozoin, HZ) on expression of heat shock proteins (HSPs) and cell viability in human monocytes by using a stable cell line (THP-1 cells). Methods: THP-1 cells were fed with native HZ or treated with pro-apoptotic molecule gliotoxin for 9 h. Thereafter, the protein expression of HSP-27 and HSP-70 was evaluated by western blotting. Alternatively, HZ-fed cells were cultured up to 72 h and cell viability parameters (survival, apoptosis and necrosis rates) were measured by flow cytometric analysis. Results: HZ increased basal protein levels of HSP-27 without altering those of HSP-70 in THP-1 cells, and promoted long-term cell survival without inducing apoptosis. As expected, gliotoxin inhibited HSP-27 protein expression and promoted long-term cell apoptosis. Conclusions: Present data show that HZ prevents cell apoptosis and enhances the expression of anti-apoptotic HSP-27 in THP-1 cells, confirming the previous evidences obtained from HZ-fed immunopurified monocytes. Since the use of a stable cell line is pivotal to perform HSP-27 silencing experiments, monocytic THP-1 cells could be a good candidate line for such an approach, which is heavily required to clarify the role of HSP-27 in survival of impaired HZ-fed monocytes during falciparum malaria.
2010
3
934
938
http://www.apjtm.net
Apoptosis; Heat shock protein-27; Hemozoin; Malaria; Monocyte; Phagocytosis; Plasmodium falciparum; THP-1 cells
Prato M; Gallo V; Valente E; Khadjavi A; Mandili G; Giribaldi G.
File in questo prodotto:
File Dimensione Formato  
Asian THP1 Dec 2010.pdf

Accesso riservato

Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 307.93 kB
Formato Adobe PDF
307.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/90832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact