Nanomaterials often act as a double sword. On the one hand they offer exceptional new properties, but on the other hand show signs of toxicity. High aspect ratio nanomaterials (HARNs) cause more concern than isometric nanoparticles owing to their physical similarity with asbestos. Many compounds may be prepared in fibrous shape with nano-sized diameter differing one from the other in various ways. This article reports a comparative picture of the chemical features and related toxic responses to a variety of HARNs, namely carbon nanotubes, asbestos, carbon nanofibers, oxide and metal wires and rods. In spite of similarities in form, durability and several biological responses elicited in vitro and in vivo, carbon nanotubes – opposite to asbestos – quench radicals, are hydrophobic and may be fully purified from metal impurities. Most of the other HARNs produced so far are metal or metal oxide compounds, less biopersistent than carbon nanotubes.
Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials (HARNS)
FUBINI, Bice;FENOGLIO, Ivana;TOMATIS, Maura;TURCI, Francesco
2011-01-01
Abstract
Nanomaterials often act as a double sword. On the one hand they offer exceptional new properties, but on the other hand show signs of toxicity. High aspect ratio nanomaterials (HARNs) cause more concern than isometric nanoparticles owing to their physical similarity with asbestos. Many compounds may be prepared in fibrous shape with nano-sized diameter differing one from the other in various ways. This article reports a comparative picture of the chemical features and related toxic responses to a variety of HARNs, namely carbon nanotubes, asbestos, carbon nanofibers, oxide and metal wires and rods. In spite of similarities in form, durability and several biological responses elicited in vitro and in vivo, carbon nanotubes – opposite to asbestos – quench radicals, are hydrophobic and may be fully purified from metal impurities. Most of the other HARNs produced so far are metal or metal oxide compounds, less biopersistent than carbon nanotubes.File | Dimensione | Formato | |
---|---|---|---|
Review Nanomedicine - pre-print.pdf
Open Access dal 01/11/2012
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
2011 Fubini Review Nanomedicine HARNs.PDF
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
2.43 MB
Formato
Adobe PDF
|
2.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.