Background and aims. Soils derived from serpentinite (serpentine soils) often have low macronutrient concentrations, exceedingly low Ca:Mg molar ratios and high heavy metal concentrations, typically resulting in sparse vegetative cover. This combined suite of edaphic stresses is referred to as the “serpentine syndrome.” Although several plant community-level studies have been conducted to identify the most important edaphic factor limiting plant growth on serpentine, the primary factor identified has often varied by plant community and local climate. Few studies to date have been conducted in serpentine plant communities of alpine or boreal climates. The goal of our study was to determine the primary limiting edaphic factors on plant community species composition and productivity (cover) in the alpine and boreal climate of the Western Alps, Italy. Methods. Soil properties and vegetation composition were analyzed for several sites underlain by serpentinite, gabbro, and calc-schist substrates and correlated using direct and indirect statistical methods. Results. Boreal forest soils were well-developed and tended to have low pH throughout the soil profile resulting in high Ni availability. Alpine soils, in comparison, were less developed. The distinct serpentine plant communities of the Western Alps are most strongly correlated with high levels of bioavailable Ni associated with low soil pH. Other factors such as macronutrient deficiency, low Ca:Mg molar ratio and drought appear to be less important. Conclusions The strong ecological influence of Ni is caused by environmental conditions which increase metal mobilization.

Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps

D'AMICO, MICHELE;
2011-01-01

Abstract

Background and aims. Soils derived from serpentinite (serpentine soils) often have low macronutrient concentrations, exceedingly low Ca:Mg molar ratios and high heavy metal concentrations, typically resulting in sparse vegetative cover. This combined suite of edaphic stresses is referred to as the “serpentine syndrome.” Although several plant community-level studies have been conducted to identify the most important edaphic factor limiting plant growth on serpentine, the primary factor identified has often varied by plant community and local climate. Few studies to date have been conducted in serpentine plant communities of alpine or boreal climates. The goal of our study was to determine the primary limiting edaphic factors on plant community species composition and productivity (cover) in the alpine and boreal climate of the Western Alps, Italy. Methods. Soil properties and vegetation composition were analyzed for several sites underlain by serpentinite, gabbro, and calc-schist substrates and correlated using direct and indirect statistical methods. Results. Boreal forest soils were well-developed and tended to have low pH throughout the soil profile resulting in high Ni availability. Alpine soils, in comparison, were less developed. The distinct serpentine plant communities of the Western Alps are most strongly correlated with high levels of bioavailable Ni associated with low soil pH. Other factors such as macronutrient deficiency, low Ca:Mg molar ratio and drought appear to be less important. Conclusions The strong ecological influence of Ni is caused by environmental conditions which increase metal mobilization.
2011
351
73
95
Bioavailable Nickel; CART; CCA; GLM; Serpentine syndrome; Soil-vegetation relationships
Michele D'Amico; Franco Previtali
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/90916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact