Density functional theory is applied with a hybrid functional to which a parametrized damped 1/r6 term has been added to account for dispersion (B3LYP+D*). This method is used with periodic boundary conditions to get the structures of the adsorption complexes. Dispersion has a substantial share on the calculated adsorption energies (46–77%). For these structures, adsorption energies are also calculated with a hybrid high-level (MP2 with complete basis set extrapolation):low level (B3LYP+D*) method. The MP2 calculations are performed on cluster models. Comparison is made with experimental heats of adsorption. B3LYP+D* underestimates heats of adsorption by about 5 kJ/mol, whereas hybrid MP2:B3LYP+D* slightly overestimates them by about 2 kJ/mol. With MP2:B3LYP+D*, also the mean absolute error is somewhat smaller, 3.8 kJ/mol compared to 5.6 kJ/mol for B3LYP+D*. Both the B3LYP+D* and the hybrid MP2/CBS:B3LYP+D* method predict the same sequence of binding energies for carbon monoxide (Ni > Mg > Zn) and carbon dioxide (Mg > Ni > Zn) adsorption on open metal cation sites in the CPO-27 metal–organic frameworks.

Heats of adsorption of CO and CO2 in metal-organic frameworks: Quantum mechanical study of CPO-27-M (M = Mg, Ni, Zn)

VALENZANO, LOREDANA;CIVALLERI, Bartolomeo;
2011-01-01

Abstract

Density functional theory is applied with a hybrid functional to which a parametrized damped 1/r6 term has been added to account for dispersion (B3LYP+D*). This method is used with periodic boundary conditions to get the structures of the adsorption complexes. Dispersion has a substantial share on the calculated adsorption energies (46–77%). For these structures, adsorption energies are also calculated with a hybrid high-level (MP2 with complete basis set extrapolation):low level (B3LYP+D*) method. The MP2 calculations are performed on cluster models. Comparison is made with experimental heats of adsorption. B3LYP+D* underestimates heats of adsorption by about 5 kJ/mol, whereas hybrid MP2:B3LYP+D* slightly overestimates them by about 2 kJ/mol. With MP2:B3LYP+D*, also the mean absolute error is somewhat smaller, 3.8 kJ/mol compared to 5.6 kJ/mol for B3LYP+D*. Both the B3LYP+D* and the hybrid MP2/CBS:B3LYP+D* method predict the same sequence of binding energies for carbon monoxide (Ni > Mg > Zn) and carbon dioxide (Mg > Ni > Zn) adsorption on open metal cation sites in the CPO-27 metal–organic frameworks.
2011
115
44
21777
21784
http://pubs.acs.org/doi/pdf/10.1021/jp205869k
L. Valenzano; B. Civalleri; K. Sillar; J. Sauer
File in questo prodotto:
File Dimensione Formato  
cpo-27-m_Sauer_JPhysChemC_2011-1.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 855.73 kB
Formato Adobe PDF
855.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/91727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 114
social impact