Because of its relatively indolent clinical course, chronic lymphocytic leukemia (CLL) offers a versatile model for testing novel therapeutic regimens and drug combinations. Nicotinamide is the main NAD(+) precursor and a direct inhibitor of four classes of enzymes, including the sirtuins. SIRT1, the main member of the sirtuin family, inactivates p53 by deacetylating a critical lysine residue. In this study, we showed that CLL cells express high levels of functional SIRT1, which is inhibited by exogenous nicotinamide. This agent blocks proliferation and promotes apoptosis selectively in leukemic cells that express wild-type (wt) p53. Nicotinamide modulates the p53-dependent genes p21, NOXA, BAX, and Mcl-1, indicating an activation of the p53 pathway and of caspase-3. DNA-damaging chemotherapeutics, such as etoposide, activate a functional loop linking SIRT1 and p53 through the induction of miR-34a. When leukemic cells are simultaneously exposed to nicotinamide and etoposide, we observe a significant increase in miR-34a levels with a concomitant inhibition of SIRT1. Furthermore, p53 acetylation levels are higher than with either agent used alone. Overall, treatment with both nicotinamde and etoposide shows strongly synergistic effects in the induction of apoptosis. We therefore concluded that nicotinamide has the dual property of inhibiting SIRT1 through a noncompetitive enzymatic block (p53 independent) and at the same time through miR-34a induction (p53 dependent). These observations suggested the therapeutic potential of nicotinamide, a novel, safe, and inexpensive drug, to be used in addition to chemotherapy for CLL patients with wt p53. Cancer Res; 71(13); 4473-83. ©2011 AACR.
Nicotinamide Blocks Proliferation and Induces Apoptosis of Chronic Lymphocytic Leukemia Cells through Activation of the p53/miR-34a/SIRT1 Tumor Suppressor Network.
AUDRITO, VALENTINA;VAISITTI, TIZIANA;MALAVASI, Fabio;DEAGLIO, Silvia
2011-01-01
Abstract
Because of its relatively indolent clinical course, chronic lymphocytic leukemia (CLL) offers a versatile model for testing novel therapeutic regimens and drug combinations. Nicotinamide is the main NAD(+) precursor and a direct inhibitor of four classes of enzymes, including the sirtuins. SIRT1, the main member of the sirtuin family, inactivates p53 by deacetylating a critical lysine residue. In this study, we showed that CLL cells express high levels of functional SIRT1, which is inhibited by exogenous nicotinamide. This agent blocks proliferation and promotes apoptosis selectively in leukemic cells that express wild-type (wt) p53. Nicotinamide modulates the p53-dependent genes p21, NOXA, BAX, and Mcl-1, indicating an activation of the p53 pathway and of caspase-3. DNA-damaging chemotherapeutics, such as etoposide, activate a functional loop linking SIRT1 and p53 through the induction of miR-34a. When leukemic cells are simultaneously exposed to nicotinamide and etoposide, we observe a significant increase in miR-34a levels with a concomitant inhibition of SIRT1. Furthermore, p53 acetylation levels are higher than with either agent used alone. Overall, treatment with both nicotinamde and etoposide shows strongly synergistic effects in the induction of apoptosis. We therefore concluded that nicotinamide has the dual property of inhibiting SIRT1 through a noncompetitive enzymatic block (p53 independent) and at the same time through miR-34a induction (p53 dependent). These observations suggested the therapeutic potential of nicotinamide, a novel, safe, and inexpensive drug, to be used in addition to chemotherapy for CLL patients with wt p53. Cancer Res; 71(13); 4473-83. ©2011 AACR.File | Dimensione | Formato | |
---|---|---|---|
PDF Cancer Res-2011-Audrito.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
917.76 kB
Formato
Adobe PDF
|
917.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.