• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25 906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and454sequencing. NRVTswere used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis- specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.

The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont

FIORILLI, VALENTINA;LANFRANCO, Luisa;BONFANTE, Paola;
2012-01-01

Abstract

• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25 906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and454sequencing. NRVTswere used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis- specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.
2012
193(3)
755
769
http://dx.doi.org/10.1111/j.1469-8137.2011.03948.x
E. Tisserant; A. Kohler; P. Dozolme-Seddas; R. Balestrini; K. Benabdellah; A. Colard; D. Croll; C. Da Silva; S.K. Gomez; R. Koul; N. Ferrol; V. Fioril...espandi
File in questo prodotto:
File Dimensione Formato  
OK_626751_Transcriptome_arbuscular_mycorrhizal_ fungus.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 761.14 kB
Formato Adobe PDF
761.14 kB Adobe PDF Visualizza/Apri
Tisserant et al 2011.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 341.92 kB
Formato Adobe PDF
341.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/92294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 283
  • ???jsp.display-item.citation.isi??? 241
social impact