Carbon dioxide capture from processes is one of the strategies adopted to decrease anthropogenic greenhouse gas emissions. To lower the cost associated with the regeneration of amine-based scrubber systems, one of the envisaged strategies is the grafting of amines onto high-surface-area supports and, in particular, onto metal-organic frameworks (MOFs). In this study, the interaction between CO(2) and aliphatic and aromatic amines has been characterized by quantum mechanical methods (MP2), focusing attention both on species already reported in MOFs and on new amine-based linkers, to inspire the rational synthesis of new high-capacity MOFs. The calculations highlight binding-site requisites and indicate that CO(2) vibrations are independent of the adsorption energy and monitoring them in probe-molecule experiments is not a suitable marker of efficient adsorption.
Tailoring Metal-Organic Frameworks for CO(2) Capture: The Amino Effect
VITILLO, Jenny Grazia;RICCHIARDI, Gabriele;BORDIGA, Silvia
2011-01-01
Abstract
Carbon dioxide capture from processes is one of the strategies adopted to decrease anthropogenic greenhouse gas emissions. To lower the cost associated with the regeneration of amine-based scrubber systems, one of the envisaged strategies is the grafting of amines onto high-surface-area supports and, in particular, onto metal-organic frameworks (MOFs). In this study, the interaction between CO(2) and aliphatic and aromatic amines has been characterized by quantum mechanical methods (MP2), focusing attention both on species already reported in MOFs and on new amine-based linkers, to inspire the rational synthesis of new high-capacity MOFs. The calculations highlight binding-site requisites and indicate that CO(2) vibrations are independent of the adsorption energy and monitoring them in probe-molecule experiments is not a suitable marker of efficient adsorption.File | Dimensione | Formato | |
---|---|---|---|
Vitillo_CO2MOFtheo_ChemSusChem_2011.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
642.89 kB
Formato
Adobe PDF
|
642.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.