A jump-diffusion process is used to model the interspike intervals distribution of neurons possessing some synapses separate from the main dendritic tree. We recognize instances of multimodal interspike intervals distribution and we qualitatively explain the phenomenon and its consequences when the underlying diffusion is a Wiener process and the jumps of constant positive and negative amplitude are Poisson time distributed.

Multimodality of the interspike interval distribution in a simple jump-diffusion model. / Sacerdote L.; Sirovich R.. - In: SCIENTIAE MATHEMATICAE JAPONICAE. - ISSN 1346-0862. - 58-2(2003), pp. 307-321.

Multimodality of the interspike interval distribution in a simple jump-diffusion model.

SACERDOTE, Laura Lea;SIROVICH, ROBERTA
2003

Abstract

A jump-diffusion process is used to model the interspike intervals distribution of neurons possessing some synapses separate from the main dendritic tree. We recognize instances of multimodal interspike intervals distribution and we qualitatively explain the phenomenon and its consequences when the underlying diffusion is a Wiener process and the jumps of constant positive and negative amplitude are Poisson time distributed.
58-2
307
321
Jump-diffusion process; first passage time; Wiener process; multimodal distribution; characteristic time
Sacerdote L.; Sirovich R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/9710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact