Recently the second author introduced combinatorial principles that characterize supercompactness for inaccessible cardinals but can also hold true for small cardinals. We prove that the proper forcing axiom PFA implies these principles hold for ω_2. Using this, we argue to show that any of the known methods for forcing models of PFA from a large cardinal assumption requires a strongly compact cardinal. If one forces PFA using a proper forcing, then we get the optimal result that a supercompact cardinal is necessary.

On the consistency strength of the proper forcing axioms

VIALE, Matteo
2011-01-01

Abstract

Recently the second author introduced combinatorial principles that characterize supercompactness for inaccessible cardinals but can also hold true for small cardinals. We prove that the proper forcing axiom PFA implies these principles hold for ω_2. Using this, we argue to show that any of the known methods for forcing models of PFA from a large cardinal assumption requires a strongly compact cardinal. If one forces PFA using a proper forcing, then we get the optimal result that a supercompact cardinal is necessary.
2011
228
2672
2687
http://arxiv.org/pdf/1012.2046.pdf
http://www.journals.elsevier.com/advances-in-mathematics/
Logic; Set Theory; Forcing Axioms; Large Cardinals
Viale Matteo, Weiss Christoph
File in questo prodotto:
File Dimensione Formato  
vialeweiss.pdf

Accesso riservato

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 264.48 kB
Formato Adobe PDF
264.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/97164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact