X-ray powder diffraction (XRPD), Infrared, Raman, and UV/Vis spectroscopy have been used to investigate the structural, vibrational, and optical properties of Ti and Mg chloride tetrahydrofuranates as precursors of heterogeneous Ziegler-Natta catalysts for polyethylene production; as well as their interaction compound (pro-catalyst) and the final catalyst obtained after interaction with the AlR(3) activator. Although the structure of the precursors and of the pro-catalyst were well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the nu(M-Cl) region; well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the nu(M-Cl) region; whereas UV/Vis spectroscopy gave the direct proof on both the formal oxidation state and the coordination environment of the active Ti sites. Those presented herein are among the first direct experimental data on the structure of the active Ti sites in Ziegler-Natta catalysts, and can be used to validate the many computational studies that have been increasing exponentially in the last few decades.

Spectroscopic Investigation of Heterogeneous Ziegler-Natta Catalysts: Ti and Mg Chloride Tetrahydrofuranates, Their Interaction Compound, and the Role of the Activator

SEENIVASAN, Kalaivani;BONINO, Francesca Carla;BORDIGA, Silvia;GROPPO, Elena Clara
2011

Abstract

X-ray powder diffraction (XRPD), Infrared, Raman, and UV/Vis spectroscopy have been used to investigate the structural, vibrational, and optical properties of Ti and Mg chloride tetrahydrofuranates as precursors of heterogeneous Ziegler-Natta catalysts for polyethylene production; as well as their interaction compound (pro-catalyst) and the final catalyst obtained after interaction with the AlR(3) activator. Although the structure of the precursors and of the pro-catalyst were well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the nu(M-Cl) region; well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the nu(M-Cl) region; whereas UV/Vis spectroscopy gave the direct proof on both the formal oxidation state and the coordination environment of the active Ti sites. Those presented herein are among the first direct experimental data on the structure of the active Ti sites in Ziegler-Natta catalysts, and can be used to validate the many computational studies that have been increasing exponentially in the last few decades.
CHEMISTRY-A EUROPEAN JOURNAL
17
31
8648
8656
http://onlinelibrary.wiley.com/doi/10.1002/chem.201100804/abstract
heterogeneous catalysis; polyethylene; polymerization; spectroscopy; Ziegler–Natta catalysts
K. Seenivasan; A. Sommazzi; F. Bonino; S. Bordiga; E. Groppo
File in questo prodotto:
File Dimensione Formato  
Seenivasan_ChemEurJ_2011.pdf

non disponibili

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 454.3 kB
Formato Adobe PDF
454.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/97768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 41
social impact