The long-standing model-independent annual modulation effect measured by the DAMA Collaboration, which fulfills all the requirements of a dark matter annual modulation signature, and the new result by the CoGeNT experiment that shows a similar behavior are comparatively examined under the hypothesis of a dark matter candidate particle interacting with the detectors' nuclei by a coherent elastic process. The ensuing physical regions in the plane of the dark matter-particle mass versus the dark matter-particle nucleon cross-section are derived for various galactic halo models and by taking into account the impact of various experimental uncertainties. It is shown that the DAMA and the CoGeNT regions agree well between each other and are well fitted by a supersymmetric model with light neutralinos which satisfies all available experimental constraints, including the most recent results from CMS and ATLAS at the CERN Large Hadron Collider.
Observations of annual modulation in direct detection of relic particles and light neutralinos
BOTTINO, Alessandro;FORNENGO, Nicolao;
2011-01-01
Abstract
The long-standing model-independent annual modulation effect measured by the DAMA Collaboration, which fulfills all the requirements of a dark matter annual modulation signature, and the new result by the CoGeNT experiment that shows a similar behavior are comparatively examined under the hypothesis of a dark matter candidate particle interacting with the detectors' nuclei by a coherent elastic process. The ensuing physical regions in the plane of the dark matter-particle mass versus the dark matter-particle nucleon cross-section are derived for various galactic halo models and by taking into account the impact of various experimental uncertainties. It is shown that the DAMA and the CoGeNT regions agree well between each other and are well fitted by a supersymmetric model with light neutralinos which satisfies all available experimental constraints, including the most recent results from CMS and ATLAS at the CERN Large Hadron Collider.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.84.055014.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
458.68 kB
Formato
Adobe PDF
|
458.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.