In this paper we propose a local spline method for the approximation of the derivative of a function f . It is based on an optimal spline quasi-interpolant operator Q_2, introduced in [12]. Differentiating Q_2 f , we construct the pseudo-spectral derivative at the quasi-interpolation knots and the corresponding differentiation matrix. An error analysis is proposed. Some numerical results and comparisons with other known methods are given.

Pseudo-spectral derivative of quadratic quasi-interpolant splines

REMOGNA, Sara
2009

Abstract

In this paper we propose a local spline method for the approximation of the derivative of a function f . It is based on an optimal spline quasi-interpolant operator Q_2, introduced in [12]. Differentiating Q_2 f , we construct the pseudo-spectral derivative at the quasi-interpolation knots and the corresponding differentiation matrix. An error analysis is proposed. Some numerical results and comparisons with other known methods are given.
67
351
362
Quasi-interpolant splines; Pseudo-spectral derivative; Differentiation matrix
S. Remogna
File in questo prodotto:
File Dimensione Formato  
remogna_2.pdf

non disponibili

Tipo di file: PDF EDITORIALE
Dimensione 92.06 kB
Formato Adobe PDF
92.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/99131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact