In low bit-rate packet-based video communications, video frames may have very small size, so that each frame fills the payload of a single network packet; thus, packet losses correspond to whole-frame losses, to which the existing error concealment algorithms are badly suited and generally not applicable. In this paper, we deal with the problem of concealment of whole frame-losses, and propose a novel technique which is capable of handling this very critical case. The proposed technique presents other two major innovations with respect to the state-of-the-art: i) it is based on optical flow estimation applied to error concealment and ii) it performs multiframe estimation, thus optimally exploiting the multiple reference frame buffer featured by the most modern video coders such as H.263+ and H.264. If data partitioning is employed, by e.g., sending headers, motion vectors, and coding modes in prioritized packets as can be done in the DiffServ network model, the algorithm is capable of exploiting the motion vectors to improve the error concealment results. The algorithm has been embedded in the H.264 test model software, and tested under both independent and correlated packet loss models with parameters typical of the wireless environment. Results show that the proposed algorithm significantly outperforms other techniques by several dBs in peak signal-to-noise ratio (PSNR), provides good visual quality, and has a rather low complexity, which makes it possible to perform real-time operation with reasonable computational resources.

Concealment of whole-frame losses for wireless low bit-rate video based on multiframe optical flow estimation

GRANGETTO, Marco;
2005-01-01

Abstract

In low bit-rate packet-based video communications, video frames may have very small size, so that each frame fills the payload of a single network packet; thus, packet losses correspond to whole-frame losses, to which the existing error concealment algorithms are badly suited and generally not applicable. In this paper, we deal with the problem of concealment of whole frame-losses, and propose a novel technique which is capable of handling this very critical case. The proposed technique presents other two major innovations with respect to the state-of-the-art: i) it is based on optical flow estimation applied to error concealment and ii) it performs multiframe estimation, thus optimally exploiting the multiple reference frame buffer featured by the most modern video coders such as H.263+ and H.264. If data partitioning is employed, by e.g., sending headers, motion vectors, and coding modes in prioritized packets as can be done in the DiffServ network model, the algorithm is capable of exploiting the motion vectors to improve the error concealment results. The algorithm has been embedded in the H.264 test model software, and tested under both independent and correlated packet loss models with parameters typical of the wireless environment. Results show that the proposed algorithm significantly outperforms other techniques by several dBs in peak signal-to-noise ratio (PSNR), provides good visual quality, and has a rather low complexity, which makes it possible to perform real-time operation with reasonable computational resources.
2005
7
316
329
BELFIORE S; M. GRANGETTO; MAGLI E; OLMO G
File in questo prodotto:
File Dimensione Formato  
9_IEEETM_2005.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/99595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 63
social impact