The dynamics of the elementary electron transfer step between pheophytin and primary ubiquinone in bacterial photosynthetic reaction centers is investigated by using a discrete state approach, including only the intramolecular normal modes of vibration of the two redox partners. The whole set of normal coordinates of the acceptor and donor groups have been employed in the computations of the Hamiltonian matrix, to reliably account both for shifts and mixing of the normal coordinates, and for changes in vibrational frequencies upon ET. It is shown that intramolecular modes provide not only a discrete set of states more strongly coupled to the initial state but also a quasicontinuum of weakly coupled states, which account for the spreading of the wave packet after ET. The computed transition probabilities are sufficiently high for asserting that electron transfer from bacteriopheophytin to the primary quinone can occur via tunneling solely promoted by intramolecular modes; the transition times, computed for different values of the electronic energy difference and coupling term, are of the same order of magnitude (102 ps) of the observed one
Role of intramolecular vibrations in long range electron transfer between pheophytin and ubiquinone in bacterial photosynthetic reaction centers
BORRELLI, Raffaele;
2005-01-01
Abstract
The dynamics of the elementary electron transfer step between pheophytin and primary ubiquinone in bacterial photosynthetic reaction centers is investigated by using a discrete state approach, including only the intramolecular normal modes of vibration of the two redox partners. The whole set of normal coordinates of the acceptor and donor groups have been employed in the computations of the Hamiltonian matrix, to reliably account both for shifts and mixing of the normal coordinates, and for changes in vibrational frequencies upon ET. It is shown that intramolecular modes provide not only a discrete set of states more strongly coupled to the initial state but also a quasicontinuum of weakly coupled states, which account for the spreading of the wave packet after ET. The computed transition probabilities are sufficiently high for asserting that electron transfer from bacteriopheophytin to the primary quinone can occur via tunneling solely promoted by intramolecular modes; the transition times, computed for different values of the electronic energy difference and coupling term, are of the same order of magnitude (102 ps) of the observed oneFile | Dimensione | Formato | |
---|---|---|---|
BioJ_830.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
173.36 kB
Formato
Adobe PDF
|
173.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.