\begin{abstract} Let $\mathrm{Op} _t(a)$, for $t\in \mathbf R$, be the pseudo-differential operator $$ f(x) \mapsto (2\pi )^{-n}\iint a((1-t)x+ty,\xi )f(y)e^{i\langle x-y,\xi\rangle\, dyd\xi $$ and let $\mathscr I_p$ be the set of Schatten-von Neumann operators of order $p\in [1,\infty ]$ on $L^2$. We are especially concerned with the Weyl case (i.{\,}e. when $t=1/2$). We prove that if $m$ and $g$ are appropriate metrics and weight functions respectively, $h_g$ is the Planck's function, $h_g^{k/2}m\in L^p$ for some $k\ge 0$ and $a\in S(m,g)$, then $\\mathrm{Op} _t(a)\in \mathscr I_p$, iff $a\in L^p$. Consequently, if $0\le \delta <\rho \le 1$ and $a\in S^r_{\rho ,\delta}$, then $\mathrm{Op} _t(a)$ is bounded on $L^2$, iff $a\in L^\infty$. \end{abstract}

Schatten-von Neumann properties in the Weyl calculus.

BUZANO, Ernesto;
2010-01-01

Abstract

\begin{abstract} Let $\mathrm{Op} _t(a)$, for $t\in \mathbf R$, be the pseudo-differential operator $$ f(x) \mapsto (2\pi )^{-n}\iint a((1-t)x+ty,\xi )f(y)e^{i\langle x-y,\xi\rangle\, dyd\xi $$ and let $\mathscr I_p$ be the set of Schatten-von Neumann operators of order $p\in [1,\infty ]$ on $L^2$. We are especially concerned with the Weyl case (i.{\,}e. when $t=1/2$). We prove that if $m$ and $g$ are appropriate metrics and weight functions respectively, $h_g$ is the Planck's function, $h_g^{k/2}m\in L^p$ for some $k\ge 0$ and $a\in S(m,g)$, then $\\mathrm{Op} _t(a)\in \mathscr I_p$, iff $a\in L^p$. Consequently, if $0\le \delta <\rho \le 1$ and $a\in S^r_{\rho ,\delta}$, then $\mathrm{Op} _t(a)$ is bounded on $L^2$, iff $a\in L^\infty$. \end{abstract}
2010
259
3080
3114
Ernesto Buzano; Joachim Toft
File in questo prodotto:
File Dimensione Formato  
schatten.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 273.56 kB
Formato Adobe PDF
273.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/100204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact