An expression for the rate constant of condensed-phase bimolecular reactions is derived. The key feature of the proposed model is the formulation of the energy-dependent rate constant in terms of the diffusion rate and the ratio of the volume in phase space that leads to product over the total volume. The dependence of the bimolecular rate constant by the reduced barrier xj ) E q/kT is given in explicit form in terms of the incomplete and the complete gamma functions of Euler. The performance of the proposed model is tested against the experimental rate constants for the Menschutkin reaction by fitting the parameters of the expression for the rate constant to experimental data at various temperatures. The potential energy barrier obtained from the regression (16.75 kcal mol-1) is close to the independently computed value at the CPCM B3LYP/CRENBLâ 6-311(+)G(d) level of theory (16.84 kcal mol-1). The corresponding fitting to the transition state theory expression affords the lower value of 14.65 kcal mol-1.

Rate-Determining Cooperative Effects of Bimolecular Reactions in Solution

CANEPA, Carlo
2006-01-01

Abstract

An expression for the rate constant of condensed-phase bimolecular reactions is derived. The key feature of the proposed model is the formulation of the energy-dependent rate constant in terms of the diffusion rate and the ratio of the volume in phase space that leads to product over the total volume. The dependence of the bimolecular rate constant by the reduced barrier xj ) E q/kT is given in explicit form in terms of the incomplete and the complete gamma functions of Euler. The performance of the proposed model is tested against the experimental rate constants for the Menschutkin reaction by fitting the parameters of the expression for the rate constant to experimental data at various temperatures. The potential energy barrier obtained from the regression (16.75 kcal mol-1) is close to the independently computed value at the CPCM B3LYP/CRENBLâ 6-311(+)G(d) level of theory (16.84 kcal mol-1). The corresponding fitting to the transition state theory expression affords the lower value of 14.65 kcal mol-1.
2006
110
13290
13294
bimolecular reactions; kinetics
C. CANEPA
File in questo prodotto:
File Dimensione Formato  
jp063120n.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 138.76 kB
Formato Adobe PDF
138.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/101723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact