We investigate spline quasi-interpolants defined by C^1 bivariate quadratic B-splines on nonuniform type-2 triangulations and by discrete linear functionals based on a fixed number of triangular mesh-points either in the support or close to the support of such B-splines. We show they can approximate a real function and its partial derivatives up to an optimal order and we derive local and global upper bounds. We also present some numerical and graphical results.

Some performances of local bivariate quadratic C^1 quasi-interpolating splines on non uniform type-2 triangulations

DAGNINO, Catterina;LAMBERTI, Paola
2005-01-01

Abstract

We investigate spline quasi-interpolants defined by C^1 bivariate quadratic B-splines on nonuniform type-2 triangulations and by discrete linear functionals based on a fixed number of triangular mesh-points either in the support or close to the support of such B-splines. We show they can approximate a real function and its partial derivatives up to an optimal order and we derive local and global upper bounds. We also present some numerical and graphical results.
2005
173
21
37
Spline approximation; Spline quasi-interpolants
C. Dagnino; P. Lamberti
File in questo prodotto:
File Dimensione Formato  
Lamberti2.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 556.85 kB
Formato Adobe PDF
556.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/102378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact