We consider the H-system $\Delta u=2H(u)u_{x}\wedge u_{y}$ on R2, where H is a continuous real mapping on R3 satisfying H(q)=H0+o(1/|q|) as |q| tends to infinity and sup_{q\in\R^{3}}|(H(q)-H0)q|<1, for some non zero constant H0. We show that a sequence of approximate solutions of the H-system on R2 admits a limit configuration made by K-bubbles, namely nonconstant solutions of K-systems on R2, and K can be the mapping H or the constant H0.

Blow-up analysis for the prescribed mean curvature equation on R2

CALDIROLI, Paolo
2009-01-01

Abstract

We consider the H-system $\Delta u=2H(u)u_{x}\wedge u_{y}$ on R2, where H is a continuous real mapping on R3 satisfying H(q)=H0+o(1/|q|) as |q| tends to infinity and sup_{q\in\R^{3}}|(H(q)-H0)q|<1, for some non zero constant H0. We show that a sequence of approximate solutions of the H-system on R2 admits a limit configuration made by K-bubbles, namely nonconstant solutions of K-systems on R2, and K can be the mapping H or the constant H0.
2009
257
405
427
Prescribed mean curvature equation; parametric surfaces
P. Caldiroli
File in questo prodotto:
File Dimensione Formato  
JFA2009.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 378.73 kB
Formato Adobe PDF
378.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/102639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact