We consider the H-system $\Delta u=2H(u)u_{x}\wedge u_{y}$ on R2, where H is a continuous real mapping on R3 satisfying H(q)=H0+o(1/|q|) as |q| tends to infinity and sup_{q\in\R^{3}}|(H(q)-H0)q|<1, for some non zero constant H0. We show that a sequence of approximate solutions of the H-system on R2 admits a limit configuration made by K-bubbles, namely nonconstant solutions of K-systems on R2, and K can be the mapping H or the constant H0.
Blow-up analysis for the prescribed mean curvature equation on R2
CALDIROLI, Paolo
2009-01-01
Abstract
We consider the H-system $\Delta u=2H(u)u_{x}\wedge u_{y}$ on R2, where H is a continuous real mapping on R3 satisfying H(q)=H0+o(1/|q|) as |q| tends to infinity and sup_{q\in\R^{3}}|(H(q)-H0)q|<1, for some non zero constant H0. We show that a sequence of approximate solutions of the H-system on R2 admits a limit configuration made by K-bubbles, namely nonconstant solutions of K-systems on R2, and K can be the mapping H or the constant H0.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JFA2009.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
378.73 kB
Formato
Adobe PDF
|
378.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.