In this note we analyze a model for a unidirectional unsteady flow of a viscous incompressible fluid with time dependent viscosity. A possible way to take into account such behaviour is to introduce a memory formalism, including thus the time dependent viscosity by using an integro-differential term and therefore generalizing the classical equation of a Newtonian viscous fluid. A possible useful choice, in this framework, is to use a rheology based on stress/strain relation generalized by fractional calculus modelling. This is a model that can be used in applied problems, taking into account a power law time variability of the viscosity coefficient. We find analytic solutions of initial value problems in an unbounded and bounded domain. Furthermore, we discuss the explicit solution in a meaningful particular case.
Fractional calculus modelling for unsteady unidirectional flow of incompressible fluids with time-dependent viscosity
POLITO, Federico
2012-01-01
Abstract
In this note we analyze a model for a unidirectional unsteady flow of a viscous incompressible fluid with time dependent viscosity. A possible way to take into account such behaviour is to introduce a memory formalism, including thus the time dependent viscosity by using an integro-differential term and therefore generalizing the classical equation of a Newtonian viscous fluid. A possible useful choice, in this framework, is to use a rheology based on stress/strain relation generalized by fractional calculus modelling. This is a model that can be used in applied problems, taking into account a power law time variability of the viscosity coefficient. We find analytic solutions of initial value problems in an unbounded and bounded domain. Furthermore, we discuss the explicit solution in a meaningful particular case.File | Dimensione | Formato | |
---|---|---|---|
published.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
236.56 kB
Formato
Adobe PDF
|
236.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.