Magnetized astrophysical plasmas reveal a great deal of structure when spatially resolved. One possible explanation for this structuring is based on the existence of filamenting instabilities driven by radiation. In this paper, previous linear calculations are extended by considering the weakly nonlinear (finite-amplitude) development of such filamenting instabilities in magnetized unstratified plasmas. It is shown that under most conditions these instabilities (in particular, the Jouse model) are unstable at finite amplitude; in particular, in the temperature and plasma-beta domains characteristic of, for example, much of the solar transition region, these modes - which can be linearly stable under these conditions - become unstable to finite-amplitude perturbations. The relevance of this to the problem of heating the solar low transition region by current dissipation is discussed.
The finite-amplitude behavior of the Joule mode under astrophysical conditions
MASSAGLIA, Silvano;FERRARI, Attilio
1991-01-01
Abstract
Magnetized astrophysical plasmas reveal a great deal of structure when spatially resolved. One possible explanation for this structuring is based on the existence of filamenting instabilities driven by radiation. In this paper, previous linear calculations are extended by considering the weakly nonlinear (finite-amplitude) development of such filamenting instabilities in magnetized unstratified plasmas. It is shown that under most conditions these instabilities (in particular, the Jouse model) are unstable at finite amplitude; in particular, in the temperature and plasma-beta domains characteristic of, for example, much of the solar transition region, these modes - which can be linearly stable under these conditions - become unstable to finite-amplitude perturbations. The relevance of this to the problem of heating the solar low transition region by current dissipation is discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.