A woven fabric can be described as a surface made of two families of fibers: in this work we study how the geometry of the weave pattern affects the symmetry properties of the elastic energy of the surface. Four basic symmetry classes of weave patterns are possible, depending on the angle between the fibers and their material properties. The properties of the pattern determine the material symmetry group of the network, under which the elastic energy is invariant. We derive representations for the energy of a woven fabric that are invariant under the symmetry group of the network, and discuss the relation of these invariants with the curvature and twist of the fibers.
Symmetry Properties of the Elastic Energy of a Woven Fabric with Bending and Twisting Resistance
INDELICATO, GIULIANA;ALBANO, Alberto
2009-01-01
Abstract
A woven fabric can be described as a surface made of two families of fibers: in this work we study how the geometry of the weave pattern affects the symmetry properties of the elastic energy of the surface. Four basic symmetry classes of weave patterns are possible, depending on the angle between the fibers and their material properties. The properties of the pattern determine the material symmetry group of the network, under which the elastic energy is invariant. We derive representations for the energy of a woven fabric that are invariant under the symmetry group of the network, and discuss the relation of these invariants with the curvature and twist of the fibers.File | Dimensione | Formato | |
---|---|---|---|
12021317184720325.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
540.6 kB
Formato
Adobe PDF
|
540.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.