We study an infinite-dimensional Ornstein-Uhlenbeck process $(X_t)$ in a given Hilbert space $H$. This is driven by a cylindrical symmetric L\'evy process without a Gaussian component and taking values in a Hilbert space $U$ which usually contains $H$. We give if and only if conditions under which $X_t$ takes values in $H$ for some $t>0$ or for all $t>0$. Moreover, we prove irreducibility for $(X_t)$ and study existence and uniqueness of invariant measures.

On linear evolution equations for a class of cylindrical Lévy noises

PRIOLA, Enrico;
2010-01-01

Abstract

We study an infinite-dimensional Ornstein-Uhlenbeck process $(X_t)$ in a given Hilbert space $H$. This is driven by a cylindrical symmetric L\'evy process without a Gaussian component and taking values in a Hilbert space $U$ which usually contains $H$. We give if and only if conditions under which $X_t$ takes values in $H$ for some $t>0$ or for all $t>0$. Moreover, we prove irreducibility for $(X_t)$ and study existence and uniqueness of invariant measures.
2010
Stochastic Partial Differential Equations and Applications (VIII)
Levico di Trento (TN)
January 2008
Stochastic Partial Differential Equations and Applications
Aracne Editrice
25
223
242
9788854843912
http://www.dimat.unina2.it/quaderni/quaderni.htm
SPDEs with Levy noise; Ornstein-Uhlenbeck process; irreducibility; invariant measure.
E. Priola; J. Zabczyk
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/104447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact